Оксид и гидроксид алюминия


61. Оксид и гидроксид алюминия

Оксид алюминия – Al2O3. Физические свойства: оксид алюминия – белый аморфный порошок или очень твердые белые кристаллы. Молекулярная масса = 101,96, плотность – 3,97 г/см3, температура плавления – 2053 °C, температура кипения – 3000 °C.

Химические свойства: оксид алюминия проявляет амфотерные свойства – свойства кислотных оксидов и основных оксидов и реагирует и с кислотами, и с основаниями. Кристаллический Аl2О3 химически пассивен, аморфный – более активен. Взаимодействие с растворами кислот дает средние соли алюминия, а с растворами оснований – комплексные соли – гидроксоалюминаты металлов:

При сплавлении оксида алюминия с твердыми щелочами металлов образуются двойные соли – метаалюминаты (безводные алюминаты):

Оксид алюминия не взаимодействует с водой и не растворяется в ней.

Получение: оксид алюминия получают методом восстановления алюминием металлов из их оксидов: хрома, молибдена, вольфрама, ванадия и др. – металлотермия, открытый Бекетовым:

Применение: оксид алюминия применяется для производства алюминия, в виде порошка – для огнеупорных, химически стойких и аб-разивных материалов, в виде кристаллов – для изготовления лазеров и синтетических драгоценных камней (рубины, сапфиры и др.), окрашенных примесями оксидов других металлов – Сr2О3 (красный цвет), Тi2О3 и Fe2О3 (голубой цвет).

Гидроксид алюминия – А1(ОН)3. Физические свойства: гидроксид алюминия – белый аморфный (гелеобразный) или кристаллический. Почти не растворим в воде; молекулярная масса – 78,00, плотность – 3,97 г/см3.

Химические свойства: типичный амфотерный гидроксид реагирует:

1) с кислотами, образуя средние соли: Al(ОН)3 + 3НNO3 = Al(NO3)3 + 3Н2О;

2) с растворами щелочей, образуя комплексные соли – гидроксоалюминаты: Al(ОН)3 + КОН + 2Н2О = К[Al(ОН)4(Н2О)2].

При сплавлении Al(ОН)3 с сухими щелочами образуются метаалюминаты: Al(ОН)3 + КОН = КAlO2 + 2Н2О.

Получение:

1) из солей алюминия под действием раствора щелочей: AlСl3 + 3NaOH = Al(ОН)3 + 3Н2О;

2) разложением нитрида алюминия водой: AlN + 3Н2О = Аl(ОН)3 + NН3?;

3) пропусканием СО2 через раствор гидроксокомплекса: [Аl(ОН)4]-+ СО2 = Аl(ОН)3 + НСО3-;

4) действием на соли Аl гидратом аммиака; при комнатной температуре образуется Аl(ОН)3.

62. Общая характеристика подгруппы хрома

Элементы подгруппы хрома занимают промежуточное положение в ряду переходных металлов. Имеют высокие температуры плавления и кипения, свободные места на электронных орбиталях. Элементы хром и молибден обладают нетипичной электронной структурой – на внешней s-орбитали имеют один электрон (как у Nb из подгруппы VB). У этих элементов на внешних d– и s-орбиталях находится 6 электронов, поэтому все орбитали заполнены наполовину, т. е. на каждой находится по одному электрону. Имея подобную электронную конфигурацию, элемент обладает особенной стабильностью и устойчивостью к окислению. Вольфрам имеет более сильную металлическая связь, нежели молибден. Степень окисления у элементов подгруппы хрома сильно варьирует. В надлежащих условиях все элементы проявляют положительную степень окисления от 2 до 6, максимальная степень окисления соответствует номеру группы. Не все степени окисления у элементов стабильны, у хрома самая стабильная – +3.

Все элементы образуют оксид MVIO3, известны также оксиды с низшими степенями окисления. Все элементы данной подгруппы амфотерны – образуют комплексные соединения и кислоты.

Хром, молибден и вольфрам востребованы в металлургии и электротехнике. Все рассматриваемые металлы покрываются пассивирующей оксидной пленкой при хранении на воздухе или в среде кислоты-окислителя. Удалив пленку химическим или механическим способом, можно повысить химическую активность металлов.

Хром. Элемент получают из хромитной руды Fe(CrO2)2, восстанавливая углем: Fe(CrO2)2 + 4C = (Fe + 2Cr) + 4CO?.

Чистый хром получают восстановлением Cr2O3 с помощью алюминия или электролиза раствора, содержащего ионы хрома. Выделяя хром с помощью электролиза, можно получить хромовое покрытие, используемое в качестве декоративных и защитных пленок.

Из хрома получают феррохром, применяемый при производстве стали.

Молибден. Получают из сульфидной руды. Его соединения используют при производстве стали. Сам металл получают при восстановлении его оксида. Прокаливая оксид молибдена с железом, можно получить ферромолибден. Используют для изготовления нитей и трубок для обмотки печей и электроконтактов. Сталь с добавлением молибдена используют в автомобильном производстве.

Вольфрам. Получают из оксида, добываемого из обогащенной руды. В качестве восстановителя используют алюминий или водород. Получившийся вольфрам в идее порошка впоследствии формуют при высоком давлении и термической обработке (порошковая металлургия). В таком виде вольфрам используют для изготовления нитей накаливания, добавляют к стали.

studfile.net

Соединения алюминия — урок. Химия, 8–9 класс.

Оксид алюминия

Алюминий образует оксид состава Al2O3.

 

Оксид алюминия обладает амфотерными свойствами, то есть реагирует с растворами и кислот, и щелочей:


Al2O3+6HCl=2AlCl3+3h3O;

 

Al2O3+6NaOH+3h3O=2Na3[Al(OH)6].

 

При сплавлении оксида алюминия с основаниями, основными оксидами и карбонатами образуются соответствующие соли метаалюминаты:

 

Al2O3+BaCO3=tBa(AlO2)2+CO2↑;

 

Al2O3+CaO=tCa(AlO2)2;

 

Al2O3+2LiOH=t2LiAlO2+h3O↑.

Гидроксид алюминия

Если к раствору соли алюминия добавлять по каплям раствор щёлочи, то выпадет белый студенистый осадок. Состав образующегося осадка зависит от условий его получения и может быть выражен формулой Al2O3⋅xh3O, но для простоты в уравнениях реакций формулу записывают как Al(OH)3:

 

Al3++3OH−=Al(OH)3↓.

 

Если при проведении этой реакции к раствору щёлочи по каплям приливать раствор соли алюминия, то осадка можно не наблюдать, так как образующийся вначале гидроксид алюминияAl(OH)3 легко растворяется в избытке щёлочи с образованием хорошо растворимой комплексной соли:

 

AlCl3+3NaOH=Al(OH)3↓+3NaCl;

 

Al(OH)3+3NaOH=Na3[Al(OH)6].

 

При нагревании гидроксид алюминия превращается в оксид:

2Al(OH)3=tAl2O3+3h3O↑.

 

Гидроксид алюминия является амфотерным соединением, т. е. проявляет как основные, так и кислотные свойства. Основные свойства проявляются в реакциях с кислотами:

 

2Al(OH)3+3h3SO4=Al2(SO4)3+6h3O.

 

При высокой температуре (сплавлении) гидроксид алюминия реагирует с основаниями, основными оксидами и карбонатами с образованием метаалюминатов:

 

Al(OH)3+KOH=tKAlO2+2h3O↑;

 

2Al(OH)3+BaO=tBa(AlO2)2+3h3O↑;

 

2Al(OH)3+CaCO3=tCa(AlO2)2+CO2↑+3h3O↑.

 

Обрати внимание!

Оксид и гидроксид алюминия обладают амфотерными свойствами.

www.yaklass.ru

Гидроксид алюминия — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 июля 2018; проверки требуют 17 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 июля 2018; проверки требуют 17 правок. Гидроксид алюминия

Гидрокси́д алюми́ния — вещество с формулой Al(OH)3 (а также H3AlO3) — соединение оксида алюминия с водой. Белое студенистое вещество, плохо растворимое в воде, обладает амфотерными свойствами.

Al(OH)3 получают при взаимодействии солей алюминия с водными растворами щёлочи, избегая их избытка:

AlCl3+3NaOH⟶Al(OH)3↓+3NaCl{\displaystyle {\mathsf {AlCl_{3}+3NaOH\longrightarrow Al(OH)_{3}\downarrow +3NaCl}}}

Гидроксид алюминия выпадает в виде белого студенистого осадка.

Второй способ получения гидроксида алюминия — взаимодействие водорастворимых солей алюминия с растворами карбонатов щелочных металлов:

2AlCl3+3Na2CO3+3h3O→2Al(OH)3↓+6NaCl+3CO2{\displaystyle {\mathsf {2AlCl_{3}+3Na_{2}CO_{3}+3H_{2}O\rightarrow 2Al(OH)_{3}\downarrow +6NaCl+3CO_{2}}}}

Гидроксид алюминия представляет собой белое кристаллическое вещество, для которого известны 4 кристаллические модификации:

  • моноклинный (γ) гиббсит
  • триклинный (γ') гиббсит (гидрагилит)
  • байерит (γ)
  • нордстрандит (β)

Существует также аморфный гидроксид алюминия переменного состава Al2O3•nH2O

Свежеосаждённый гидроксид алюминия может взаимодействовать с:

Al(OH)3+3HCl⟶AlCl3+3h3O{\displaystyle {\mathsf {Al(OH)_{3}+3HCl\longrightarrow AlCl_{3}+3H_{2}O}}}
Al(OH)3+3HNO3⟶Al(NO3)3+3h3O{\displaystyle {\ce {Al(OH)3 +3HNO3 -> Al(NO3)3 + 3h3O}}}
В концентрированном растворе гидроксида натрия:
Al(OH)3+NaOH⟶Na[Al(OH)4]{\displaystyle {\mathsf {Al(OH)_{3}+NaOH\longrightarrow Na[Al(OH)_{4}]}}}
При сплавлении твёрдых реагентов:
Al(OH)3+NaOH →1000oC NaAlO2+2h3O{\displaystyle {\mathsf {Al(OH)_{3}+NaOH\ {\xrightarrow {1000^{o}C}}\ NaAlO_{2}+2H_{2}O}}}

При нагревании разлагается:

2Al(OH)3 →t>575oC Al2O3+3h3O{\displaystyle {\mathsf {2Al(OH)_{3}\ {\xrightarrow {t>575^{o}C}}\ Al_{2}O_{3}+3H_{2}O}}}

С растворами аммиака не реагирует.

ЛД50[править | править код]

>5000 мг/кг (крысы, перорально).

Гидроксид алюминия используется при очистке воды, так как обладает способностью адсорбировать различные вещества.
В медицине, в качестве антацидного средства[1], в качестве адъюванта при изготовлении вакцин[2].
В качестве абразивного компонента зубной пасты[3].
В качестве антипирена (подавителя горения) в пластиках и других материалах.
После обработки до окислов применяется в качестве носителя для катализаторов[4].

  • Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1988. — Т. 1 (Абл-Дар). — 623 с.

ru.wikipedia.org

Алюминий, подготовка к ЕГЭ по химии

Алюминий является самым распространенным металлом в земной коре. Свойства алюминия позволяют активно применять в составе металлоконструкций: он легкий, мягкий, поддается штамповке, обладает высокой антикоррозийной устойчивостью.

Для алюминия характерна высокая химическая активность, отличается также высокой электро- и теплопроводностью.

При переходе атома алюминия в возбужденное состояние 2 электрона s-подуровня распариваются, и один электрон переходит на p-подуровень.

В природе алюминий встречается в виде минералов:

Алюминий получают путем электролиза расплава Al2O3 в криолите (Na3AlF6). Галлий, индий и таллий получают схожим образом - методом электролиза их оксидов и солей.

  • Реакции с неметаллами
  • При комнатной температуре реагирует с галогенами (кроме фтора) и кислородом, покрываясь при этом оксидной пленкой.

    Al + O2 → Al2O3 (снаружи Al покрыт оксидной пленкой - Al2O3)

    Al + Br2 → AlBr3 (бромид алюминия)

    При нагревании алюминий вступает в реакции с фтором, серой, азотом и углеродом.

    Al + F2 → (t) AlF3 (фторид алюминия)

    Al + S → (t) Al2S3 (сульфид алюминия)

    Al + N2 → (t) AlN (нитрид алюминия)

    Al + C → (t) Al4C3 (карбид алюминия)

  • Реакции с кислотами и щелочами
  • Алюминий проявляет амфотерные свойства (греч. ἀμφότεροι - двойственный), вступает в реакции как с кислотами, так и с основаниями.

    Al + HCl → AlCl3 + H2

    Al + H2SO4(разб.) → Al2(SO4)3 + H2

    Al + H2SO4(конц.) → (t) Al2(SO4)3 + SO2↑ + H2O

    Al + HNO3(разб.) → (t) Al(NO3)3 + N 2O + H2O

    Al + NaOH + H2O → Na[Al(OH)4] + H2↑ (тетрагидроксоалюминат натрия; поскольку алюминий дан в чистом виде - выделяется водород)

    При прокаливании комплексные соли не образуются, так вода испаряется:

    Na[Al(OH)4] → (t) NaAlO2 + H2O

  • Реакция с водой
  • При комнатной температуре не идет из-за образования оксидной пленки - Al2O3 - на воздухе. Если разрушить оксидную пленку нагреванием раствора щелочи или амальгамированием (покрытием металла слоем ртути) - реакция идет.

    Al + H2O → (t) Al(OH)3 + H2

  • Алюминотермия
  • Алюминотермия (лат. Aluminium + греч. therme - тепло) - способ получения металлов и неметаллов, заключающийся в восстановлении их оксидов алюминием. Температуры при этом процессе могут достигать 2400°C.

    С помощью алюминотермии получают Fe, Cr, Mn, Ca, Ti, V, W.

    Fe2O3 + Al → (t) Al2O3 + Fe

    Cr2O3 + Al → (t) Al2O3 + Cr

    MnO2 + Al → (t) Al2O3 + Mn

    Оксид алюминия

    Оксид алюминия получают в ходе взаимодействия с кислородом - на воздухе алюминий покрывается оксидной пленкой. При нагревании гидроксид алюминия, как нерастворимое основание, легко разлагается на оксид и воду.

    Al + O2 → Al2O3

    Al(OH)3 → (t) Al2O3 + H2O↑

    Проявляет амфотерные свойства: реагирует и с кислотами, и с основаниями.

    Al2O3 + H2SO4 → Al2(SO4)3 + H2O

    Al2O3 + NaOH + H2O → Na[Al(OH)4] (тетрагидроксоалюминат натрия)

    Al2O3 + NaOH → (t) NaAlO2 + H2O (алюминат натрия)

    Al2O3 + Na2O → (t) NaAlO2

    Гидроксид алюминия

    Гидроксид алюминия получают в ходе реакций обмена между растворимыми солями алюминия и щелочами. В результате гидролиза солей алюминия часто выпадает белый осадок - гидроксид алюминия.

    AlBr3 + LiOH → Al(OH)3↓ + LiBr

    Al(NO3)3 + K2CO3 → KNO3 + Al(OH)3↓ + CO2 (двойной гидролиз: Al(NO3)3 гидролизуется по катиону, K2CO3 - по аниону)

    Al2S3 + H2O → Al(OH)3↓ + H2S↑

    Проявляет амфотерные свойства. Реагирует и с кислотами, и с основаниями. Вследствие нерастворимости гидроксид алюминия не реагирует с солями.

    Al(OH)3 + H2SO4 → Al2(SO4)3 + H2O

    Al(OH)3 + LiOH → Li[Al(OH)4] (при избытке щелочи будет верным написание - Li3[Al(OH)6] - гексагидроксоалюминат лития)

    © Беллевич Юрий Сергеевич 2018-2020

    Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

    studarium.ru

    6)Оксид и гидроксид алюминия. Получение и свойства

    Оксид алюминия – Al2O3. Физические свойства: оксид алюминия – белый аморфный порошок или очень твердые белые кристаллы.

    Получение: оксид алюминия получают методом восстановления алюминием металлов из их оксидов: хрома, молибдена, вольфрама, ванадия и др. – металлотермия, открытый Бекетовым:

    Cr2O3 + Al = Al2O3 + 2Cr

    Химические свойства:

    Оксид алюминия проявляет амфотерные свойства

    1. взаимодействие с кислотами

    А12О3 +6HCl = 2AlCl3 + 3h3O

    2. взаимодействие со щелочами

    А12О3 + 2NaOH – 2NaAlO2 + h3O

    Al2O3 + 2NaOH + 5h3O = 2Na[Al(OH)4(h3O)]

    3. при накаливании смеси оксида соответствующего металла с порошком алюминия происходит бурная реакция, ведущая к выделению из взятого оксида свободного металла. Метод восстановления при помощи Al (алюмотермия) часто применяют для получения ряда элементов (Cr, Мп, V, W и др.) в свободном состоянии

    2А1 + WO3 = А12Оз + W

    4. взаимодействие с солями, имеющими сильнощелочную среду, вследствие гидролиза

    Al2O3 + Na2CO3 = 2 NaAlO2 + CO2

    Гидроксид алюминия – А1(ОН)3. Физические свойства: гидроксид алюминия – белы, аморфный (гелеобразный) или кристаллический. Почти не растворим в воде;

    Получение:

    1) из солей алюминия под действием раствора щелочей: AlСl3 + 3NaOH = Al(ОН)3 + 3Н2О;

    2) разложением нитрида алюминия водой: AlN + 3Н2О = Аl(ОН)3 + NН3?;

    3) пропусканием СО2 через раствор гидроксокомплекса: [Аl(ОН)4]-+ СО2 = Аl(ОН)3 + НСО3-;

    4) действием на соли Аl гидратом аммиака; при комнатной температуре образуется Аl(ОН)3.

    Химические свойства:

    1. взаимодействие с кислотами

    Al(OH)3 +3HCl = 2AlCl3 + 3h3O

    2. при взаимодействии с сильными щелочами образуются соответствующие алюминаты:

    NaOH + А1(ОН)з = Na[A1(OH)4]

    3. термическое разложение

    2Al(OH)3 = Al2О3 + 3h3O

    Гидроксид алюминия не реагирует с гидратом аммиака, хлоридомаммония, диоксидами углерода и серы, сероводородом.

    7.Амфотерность оксида и гидроксида алюминия. Комплексные соединения алюминия.

    Al2O3  –  твердое вещество белого цвета, тугоплавкое. Не реагирует с водой и не растворяется.

    Типичный амфотерный оксид, поэтому реагирует с кислотами и щелочами.

    Al2O3 + 6 HCl = 2 AlCl3 + 3 H2O  

    При сплавлении образуется метаалюминат натрия:

    Al2O3 (тв)+ 2 NaOH (тв) t→ 2 NaAlO2 + H2O,  

    В растворе щёлочи образуется тетрагидроксоалюминат натрия:

    Al2O3 + 2 NaOH + 3 H2O = 2Na[Al(OH)4

    Алюминаты неустойчивы и даже при слабом подкислении разрушаются:

    Na[Al(OH)4] + CO2 = Al(OH)3 + NaHCO3

    Al(OH)3  – белое вещество, нерастворимое в воде,  амфотерный гидроксид.

    Получают косвенно реакцией обмена между солью алюминия и щелочью:

    AlCl3 + NaOH (по каплям)= Al(OH)3 ↓ + 3 NaCl 

    Взаимодействует с кислотами и щелочами.

    Al(OH)3 + 3 HCl = AlCl3 + 3 H2O

    В растворе: Al(OH)+ NaOH(избыток) = Na[Al(OH)4]

    или Al(OH)+ 3 NaOH = Na3[Al(OH)6]

    В расплавах: Al(OH)+ NaOH = NaAlO2 + 2H2O

    Очень часто амфотерные гидроксиды элементов в степени окисления +III существуют также в мета-форме, например:

    AlO(OH) - метагидроксид алюминия

    FeO(OH) - метагидроксид железа (орто-форма "Fe(OH)3" не существует).

    Амфотерные гидроксиды практически нерастворимы в воде, наиболее удобный способ их получения - осаждение из водного раствора с помощью слабого основания - гидрата аммиака:

    Al(NO3)3 + 3(Nh4 · h3O) = Al(OH)3↓ + 3Nh5NO3 (20 °C)

    Al(NO3)3 + 3(Nh4 · h3O) = AlO(OH)↓ + 3Nh5NO3 + h3O (80 °C)

    В случае использования избытка щелочей в обменной реакции подобного типа гидроксид алюминия осаждаться не будет, поскольку алюминий в силу своей амфотерности переходит в анион:

    Al(OH)3(т) + OH− = [Al(OH)4]−

    Пример молекулярного уравнения реакции этого типа:

    Al(NO3)3 + 4NaOH(избыток) = Na[Al(OH)4] + 3NaNO3

    Образующаяся соль относится к числу комплексных соединений (комплексных солей): они включают комплексный анион [Al(OH)4]−. Названия этой соли таково:

    Na[Al(OH)4] - тетрагидроксоалюминат натрия

    Растворение амфотерных гидроксидов в щелочных растворах рассматривается как процесс образования гидроксосолей (гидроксокомплексов). Экспериментально доказано существование гидроксомплексов [Аl(ОН)42О)2]-, [Аl(ОН)6]3-, [Аl(ОН)52O)]2-; из них первый — наиболее прочный. Координационное число алюминия в этом комплексе равно 6, т.е. алюминий является шестикоординированным.

    Комплексным (координационным) соединением (комплексом) называется такое соединение, в узлах кристаллической решетки которого находятся комплексные ионы, обладающие высокой симметрией, устойчивые как в твердом состоянии, так и в растворах. В центре комплексного иона находится металл (обычно d-металл, реже р-металл), который называется комплексообразователь. Вокруг него очень симметрично располагаются лиганды, за счет чего электронная плотность распределяется равномерно и комплекс становится устойчивым. Лигандами могут быть анионы кислот или нейтральные молекулы (Н2О, СО, NH3), которые имеют неподеленную пару электронов. Она принимает участие в донорно-акцепторном взаимодействии с вакантной орбиталью комплексообразователя.

    studfile.net

    Оксид и гидроксид алюминия

    Оксид и гидроксид алюминия, их амфотерность

    Важнейшими соединениями алюминия является алюминий оксид и алюминий гидроксид.

    Алюминий оксид Al2O3 — белая тугоплавкая кристаллическое вещество, нерастворимое в воде. В лабораторных условиях алюминий оксид добывают сжиганием алюминия или термическим разложением алюминий гидроксида:

    4Al + 3O2 → 2Al2O3

    2Al(OH)3 Al2O3 + 3h3O.

    По химическим свойствам алюминий оксид являются амфотерными. Он реагирует с кислотами, проявляя свойства основных оксидов:

    Al2O3 + 6HCl = 2AlCl3 + 3h3O.

    Реагируя с лугами, он проявляет свойства кислотных оксидов. В растворах щелочей образуются комплексные соединения:

    Al2O3 + 2KOH + 3h3O = 2K [Al(OH)4].

    При сплавлении образуются соли метаалюминиевои кислоты, например, метаалюминат калия:

    Al2O3 + 2KOH 2KAlO2 + h3O.

    Естественную кристаллическую модификацию алюминий оксида (корунд) применяются в различных областях науки и производства. Рубины, например, является материалом для изготовления рабочих камней точных механизмов. Кристаллы корунда — рабочие тела лазеров. Рубины и сапфиры используют для отделки ювелирных изделий. Алюминий оксид является главной составляющей наждака — абразивного материала. Тугоплавкость и коррозионная стойкость алюминий оксида предопределяет его применение для изготовления термостойкого химической посуды, кирпича для кладки стекловаренных печей.

    Алюминий гидроксид Al(OH)3 — это нерастворимое в воде кристаллическое вещество белого цвета. В лаборатории алюминий гидроксид добывают из растворимых солей алюминия при их взаимодействии с растворами щелочей, например:

    AlCl3 + 3КOH = Al(OH)3 ↓ + 3КCl.

    Полученный алюминий гидроксид имеет вид студенистого осадка.

    Алюминий гидроксид проявляет амфотерные свойства и растворяется как в кислотах, так и в щелочах:

    Al(OH)3 + 3HCl → AlCl3 + 3h3O

    Al(OH)3 + NaOH → Na[Al(OH)4].

    При сплавлении алюминий гидроксида с натрий гидроксидом образуется натрий метаалюминат:

    Al(OH)3 + NaOH NaAlO2 + 2h3O.

    Способность алюминий гидроксида реагировать с кислотами используют в терапии. Он входит в состав лекарственных препаратов, используемых для снижения кислотности и уменьшение изжоги.

    Итак, главными особенностями алюминий оксида и алюминий гидроксида является их амфотерными свойствами.

     

    xn----7sbfhivhrke5c.xn--p1ai

    Оксид алюминия — Википедия

    Окси́д алюми́ния Al2O3 — бинарное соединение алюминия и кислорода. В природе распространён как основная составляющая часть глинозёма[3][нет в источнике], нестехиометрической смеси оксидов алюминия, калия, натрия, магния и т. д. В модификации корунд имеет атомную кристаллическую решётку[источник не указан 172 дня].

    Бесцветные нерастворимые в воде кристаллы. Амфотерный оксид. Практически не растворим в кислотах. Растворяется в горячих растворах и расплавах щелочей. Является диэлектриком[4][5][6], но некоторые[7][8] исследователи считают его полупроводником n-типа. Диэлектрическая проницаемость 9,5—10. Электрическая прочность 10 кВ/мм.

    Плотность[править | править код]

    Модификация Плотность, г/см3
    α-Al2O3 3,99[2]
    θ-Al2O3 3,61[3]
    γ-Al2O3 3,68[4]
    κ-Al2O3 3,77[5]

    Основные модификации оксида алюминия[править | править код]

    В природе можно встретить только тригональную α-модификацию оксида алюминия в виде минерала корунда и его редких драгоценных разновидностей (рубин, сапфир и т. д.). Она является единственной термодинамически стабильной формой Al2O3. При термообработке гидроксидов алюминия около 400 °С получают кубическую γ-форму. При 1100—1200 °С с γ-модификацией происходит необратимое превращение в α-Al2O3, однако скорость этого процесса невелика, и для завершения фазового перехода необходимо либо наличие минерализаторов, либо повышение температуры обработки до 1400—1450 °С[9].

    Известны также следующие кристаллические модификации оксида алюминия: кубическая η-фаза, моноклинная θ-фаза, гексагональная χ-фаза, орторомбическая κ-фаза. Спорным остаётся существование δ-фазы, которая может быть тетрагональной или орторомбической[9][10].

    Вещество, иногда описываемое как β-Al2O3, на самом деле представляет собой не чистый оксид алюминия, а ряд алюминатов щелочных и щёлочноземельных металлов со следующими общими формулами: MeO·6Al2O3 и Me2O·11Al2O3, где МеО — это оксиды кальция, бария, стронция и т. д., а Ме2О — оксиды натрия, калия, лития и других щелочных металлов. При 1600—1700 °С β-модификация разлагается на α-Al2O3 и оксид соответствующего металла, который выделяется в виде пара.

    Получают из бокситов, нефелинов, каолина, алунитов алюминатным или хлоридным методом. Сырьё в производстве алюминия, катализатор, адсорбент, огнеупорный и абразивный материал.

    3Cu2O + 2Al →1000 ∘C 6Cu + Al2O3{\displaystyle {\mathsf {3Cu_{2}O\ +\ 2Al\ {\xrightarrow {1000\ ^{\circ }C}}\ 6Cu\ +\ Al_{2}O_{3}}}}
    2Al(OH)3→tAl2O3+3h3O{\displaystyle {\ce {2Al(OH)3 ->[{t}] Al2O3 + 3h3O}}}

    Плёнки оксида алюминия на поверхности алюминия получают электрохимическими или химическими методами. Так, например, получают диэлектрический слой в алюминиевых электролитических конденсаторах. В микроэлектронике также применяется эпитаксия оксида алюминия, которая многими учёными считается перспективной, например, в изоляции затворов полевых транзисторов.[5][6]

    Оксид алюминия (Al2O3), как минерал, называется корунд. Крупные прозрачные кристаллы корунда используются как драгоценные камни. Из-за примесей корунд бывает окрашен в разные цвета: красный корунд (содержащий примеси хрома) называется рубином, синий, традиционно — сапфиром. Согласно принятым в ювелирном деле правилам, сапфиром называют кристаллический α-оксид алюминия любой окраски, кроме красной. В настоящее время кристаллы ювелирного корунда выращивают искусственно, но природные камни всё равно ценятся выше, хотя по виду не отличаются. Также корунд применяется как огнеупорный материал. Остальные кристаллические формы используются, как правило, в качестве катализаторов, адсорбентов, инертных наполнителей в физических исследованиях и химической промышленности.

    Керамика на основе оксида алюминия обладает высокой твёрдостью, огнеупорностью и антифрикционными свойствами, а также является хорошим изолятором. Она используется в горелках газоразрядных ламп, подложек интегральных схем, в запорных элементах керамических трубопроводных кранов, в зубных протезах и т. д.

    Так называемый β-оксид алюминия в действительности представляет собой смешанный оксид алюминия и натрия. Он и соединения с его структурой вызывают большой научный интерес в качестве металлопроводящего твёрдого электролита.

    γ-Модификации оксида алюминия применяются в качестве носителя катализаторов, сырья для производства смешанных катализаторов, осушителя в различных процессах химических, нефтехимических производств (ГОСТ 8136-85).

    1. Pillet, S.; Souhassou, M.; Lecomte, C.; Schwarz, K. и др. Acta Crystallograica A (39, 1983-) (2001), 57, 209—303
    2. Husson, E.; Repelin, Y. Europen Journal of Solid State Inogranic Chemistry
    3. Gutierrez, M.; Taga, A.; Johansson, B. Physical Review, Serie 3. B — Condensed Matter (18, 1978-) (2001), 65, 0121011-0121014
    4. Smrcok, L.; Langer, V.; Halvarsson, M. Ruppi, S. Zeitschrift fuer Kristallographie (149, 1979-) (2001), 216, 409—412

    ru.wikipedia.org

    Гидроксид алюминия, характеристика, свойства и получение, химические реакции

    Гидроксид алюминия, характеристика, свойства и получение, химические реакции.

     

     

    Гидроксид алюминия – неорганическое вещество, имеет химическую формулу Al(OH)3.

     

    Краткая характеристика гидроксида алюминия

    Модификации гидроксида алюминия

    Физические свойства гидроксида алюминия

    Получение гидроксида алюминия

    Химические свойства гидроксида алюминия

    Химические реакции гидроксида алюминия

    Применение и использование гидроксида алюминия

     

    Краткая характеристика гидроксида алюминия:

    Гидроксид алюминия – неорганическое вещество белого цвета.

    Химическая формула гидроксида алюминия Al(OH)3.

    Плохо растворяется в воде.

    Обладает способностью адсорбировать различные вещества.

     

    Модификации гидроксида алюминия:

    Известны 4 кристаллические модификации гидроксида алюминия: гиббсит, байерит, дойлеит и нордстрандит.

    Гиббсит обозначается γ-формой гидроксида алюминия, а байерит – α-формой гидроксида алюминия.

    Гиббсит является наиболее химически стабильной формой гидроксида алюминия.

     

    Физические свойства гидроксида алюминия:

    Наименование параметра: Значение:
    Химическая формула Al(OH)3
    Синонимы и названия иностранном языке для гидроксида алюминия α-формы potassium hydroxide (англ.)

    aluminum hydroxide α-form (англ.)

    байерит (рус.)

    Синонимы и названия иностранном языке для гидроксида алюминия γ-формы potassium hydroxide (англ.)

    aluminium hydroxide (англ.)

    aluminum hydroxide (англ.)

    hydrargillite (англ.)

    гиббсит (рус.)

    гидраргиллит (рус.)

    Тип вещества неорганическое
    Внешний вид гидроксида алюминия α-формы бесцветные моноклинные кристаллы
    Внешний вид гидроксида алюминия γ-формы белый моноклинные кристаллы
    Цвет белый, бесцветный
    Вкус —*
    Запах
    Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) твердое вещество
    Плотность гидроксида алюминия γ-формы (состояние вещества – твердое вещество, при 20 °C), кг/м3 2420
    Плотность гидроксида алюминия γ-формы (состояние вещества – твердое вещество, при 20 °C), г/см3 2,42
    Температура разложения гидроксида алюминия α-формы, °C 150
    Температура разложения гидроксида алюминия γ-формы, °C 180
    Молярная масса, г/моль 78,004

    * Примечание:

    — нет данных.

     

    Получение гидроксида алюминия:

    Гидроксид алюминия получают в результате следующих химических реакций:

    1. 1. в результате взаимодействия хлорида алюминия и гидроксида натрия:

    AlCl3 + 3NaOH → Al(OH)3 + 3NaCl.

    При этом гидроксид алюминия выпадает в виде белого студенистого осадка.

    Гидроксид алюминия получают также при взаимодействии солей алюминия с водными растворами щёлочи, избегая их избытка.

    1. 2. в результате взаимодействия хлорида алюминия, карбоната натрия и воды:

    2AlCl3 + 3Na2CO3 + 3H2O → 2Al(OH)3 + 3CO2 + 6NaCl.

    При этом гидроксид алюминия выпадает в виде белого студенистого осадка.

    Гидроксид алюминия получают также при взаимодействии водорастворимых солей алюминия с карбонатами щелочных металлов.

     

    Химические свойства гидроксида алюминия. Химические реакции гидроксида алюминия:

    Гидроксид алюминия обладает амфотерными свойствами, т. е. обладает как основными, так и кислотными свойствами.

    Химические свойства гидроксида алюминия аналогичны свойствам гидроксидов других амфотерных металлов. Поэтому для него характерны следующие химические реакции:

    1. реакция гидроксида алюминия с гидроксидом натрия:

    Al(OH)3 + NaOH → NaAlO2 + 2H2O (t = 1000 °C),

    Al(OH)3 + 3NaOH → Na3[Al(OH)6],

    Al(OH)3 + NaOH → Na[Al(OH)4].

    В результате реакции образуются в первом случае – алюминат натрия и вода, во втором – гексагидроксоалюминат натрия, в третьем – тетрагидроксоалюминат натрия. В третьем случае в качестве гидроксида натрия используется концентрированный раствор.

    2. реакция гидроксида алюминия с гидроксидом калия:

    Al(OH)3 + KOH → KAlO2 + 2H2O (t = 1000 °C),

    Al(OH)3 + KOH → K[Al(OH)4].

    В результате реакции образуются в первом случае – алюминат калия и вода, во втором – тетрагидроксоалюминат калия. Во втором случае в качестве гидроксида калия используется концентрированный раствор.

    3. реакция гидроксида алюминия с азотной кислотой:

    Al(OH)3 + 3HNO3 → Al(NO3)3 + 3H2O.

    В результате реакции образуются нитрат алюминия и вода.

    Аналогично проходят реакции гидроксида алюминия и с другими кислотами.

    4. реакция гидроксида алюминия с фтороводородом:

    Al(OH)3 + 3HF → AlF3 + 3H2O,

    6HF + Al(OH)3 → H3[AlF6] + 3H2O.

    В результате реакции образуются в первом случае – фторид алюминия и вода, во втором – гексафтороалюминат водорода и вода. При этом фтороводород в первом случае в качестве исходного вещества используется в виде раствора.

    5. реакция гидроксида алюминия с бромоводородом:

    Al(OH)3 + 3HBr → AlBr3 + 3H2O.

    В результате реакции образуются бромид алюминия и вода.

    6. реакция гидроксида алюминия с йодоводородом:

    Al(OH)3 + 3HI → AlI3 + 3H2O.

    В результате реакции образуются йодид алюминия и вода.

    7. реакция термического разложения гидроксида алюминия:

    Al(OH)3 → AlO(OH) + H2O (t = 200 °C),

    2Al(OH)3 → Al2O3 + 3H2O (t = 575 °C).

    В результате реакции образуются в первом случае – метагидроксид алюминия и вода, во втором – оксид алюминия и вода.

    8. реакция гидроксида алюминия и карбоната натрия:

    2Al(OH)3 + Na2CO3 → 2NaAlO2 + CO2 + 3H2O.

    В результате реакции образуются алюминат натрия, оксид углерода (IV) и вода.

    10. реакция гидроксида алюминия и гидроксида кальция:

    Ca(OH)2 + 2Al(OH)3 → Ca[Al(OH)4]2.

    В результате реакции образуется тетрагидроксоалюмината кальция.

     

    Применение и использование гидроксида алюминия:

    Гидроксид алюминия используется при очистке воды (как адсорбирующее вещество), в медицине, в качестве наполнителя в зубной пасте (как абразивное вещество), пластиках и пластмассах (как антипирен).

     

    Примечание: © Фото //www.pexels.com, //pixabay.com

     

    карта сайта

    гидроксид алюминия реагирует кислота 1 2 3 4 5 вода
    уравнение реакций соединения реакции масса взаимодействие гидроксида

     

    Коэффициент востребованности 2 317

    xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai

    гидроксид алюминия - Aluminium hydroxide

    гидроксид алюминия
    имена
    Предпочтительное название IUPAC

    гидроксид алюминия

    Систематическое название IUPAC

    Алюминий (3+) trioxidanide

    Другие имена Aluminic кислота

    Aluminic гидроксида
    алюминия (III) , гидроксид
    Гидроксид алюминия
    Алюминий тригидроксид
    гидратированный оксид алюминия

    Orthoaluminic кислота
    Идентификаторы
    3D модель ( JSmol )
    ChEBI
    ChEMBL
    ChemSpider
    DrugBank
    ИКГВ InfoCard 100.040.433
    KEGG
    номер RTECS BD0940000
    UNII
    • InChI = 1S / Al.3h3O / ч; 3 * 1h3 / д + 3 ;;; / п-3 У  Ключ: WNROFYMDJYEPJX-UHFFFAOYSA-K
      A02AB02 ( ВОЗ ) (algeldrate) N 
    • InChI = 1 / Al.3h3O / ч; 3 * 1h3 / д + 3 ;;; / п-3

      Ключ: WNROFYMDJYEPJX-DFZHHIFOAJ

    • [ОН -] [ОН -].. [ОН -]. [Al + 3]

    свойства
    Al (OH) 3
    Молярная масса 78,00 г / моль
    Внешность Белый аморфный порошок
    плотность 2,42 г / см 3 , твердое вещество
    Температура плавления 300 ° С (572 ° F, 573 К)
    0,0001 г / 100 мл
    3 × 10 -34
    Растворимость растворим в кислотах и щелочах
    Кислотность (р К ) > 7
    изоэлектрической точки 7,7
    термохимия
    -1277 кДж · моль -1
    Фармакология
    A02AB01 ( ВОЗ )
    • США : B (нет риска в не человеческих исследованиях)
    опасности
    Паспорт безопасности Внешний MSDS
    СГС пиктограммы
    h419 , h435
    P264 , P261 , P280 , P271 , P312 , P304 + 340 , P305 + 351 + 338 , P337 + 313
    NFPA 704
    точка возгорания Негорючий
    Смертельная доза или концентрация ( LD , LC ):
    > 5000 мг / кг (крыса, перорально)
    Родственные соединения
    Никто

    Родственные соединения

    Оксид натрия ,
    гидроксид алюминия , оксид
    За исключением случаев, когда указано иное, данные приведены для материалов в их стандартном состоянии (при 25 ° C [77 ° F], 100 кПа).
    N проверить  ( что   ?) YN
    ссылки Infobox

    Гидроксид алюминия , Al (OH) 3 , встречается в природе в виде минерала гиббсита (также известный как гидраргиллит) и тремя гораздо более редких полиморфов : байерит, doyleite и нордстрандят. Гидроксид алюминия является амфотерным в природе, то есть, он имеет как основные и кислотные свойства. Тесно связаны гидроксид алюминия оксид , AlO (ОН), и оксид алюминия или оксид алюминия (Al 2 O 3 ), последний из которых также амфотерные. Эти соединения вместе являются основными компонентами алюминиевой руды боксита .

    Номенклатура

    Присвоения имен для различных форм гидроксида алюминия является неоднозначным и не существует никакого универсального стандарта. Все четыре полиморфных имеют химический состав тригидроксида алюминия (один алюминиевый атом , прикрепленный к трем гидроксидным группам).

    Гиббсит также известен как гидраргиллит, названный в честь греческих слов для воды ( гидры ) и глины ( argylles ). Первое соединение назвали гидраргиллит считалось, что гидроксид алюминия, но позднее было обнаружено, что фосфат алюминия ; несмотря на это, как гиббсит и гидраргиллит используются для обозначения того же полиморфизм гидроксида алюминия, с гиббситом используется наиболее часто в Соединенных Штатах и гидраргиллит чаще используется в Европе. В 1930 г. он был передан в качестве тригидрат α-оксида алюминия , чтобы противопоставить его с байерита , который получил название тригидрат β-оксида алюминия (альфа и бета обозначения были использованы , чтобы дифференцировать более и менее распространенные формы соответственно). В 1957 год симпозиум по глиноземной номенклатуре попытался разработать универсальный стандарт, в результате чего гиббсита быть обозначен & gamma; Al (OH) 3 , байерит став альфа-Al (OH) 3 , и нордстрандит быть обозначен Al (OH) 3 . На основе их кристаллографических свойств, предложенный номенклатура и обозначение для гиббсита , чтобы быть α-Al (OH) 3 , байерит , которые будут назначены бета-Al (OH) 3 , и оба нордстрандит и doyleite обозначены Al (OH) 3 . В соответствии с этим назначением, альфа и бета префиксы относятся к гексагональным, плотно упакованным структурам и измененным или обезвоженным полиморфизмам , соответственно, без дифференциации между нордстрандят и doyleite.

    свойства

    Гиббсит имеет типичную структуру гидроксида металла с водородными связями . Она построена из двойных слоев гидроксильных групп с алюминиевыми ионами , занимающих две трети октаэдрических дырок между двумя слоями.

    Гидроксид алюминия является амфотерным . В кислоте , он действует в качестве базы Бренстеда-Лоури , подбирая ионы водорода и нейтрализует кислоту, получая соль:

    3HCl + Al (OH) 3 → AlCl 3 + 3H 2 O

    В базах, он действует как кислота Льюиса , принимая электронную пару из ионов гидроксида:

    Al (OH) 3 + ОН - → Al (OH) 4 -

    Полиморфизм

    Четыре полиморфные гидроксид алюминия существует, все они основаны на общей комбинации одного атома алюминия и трех гидроксид молекул в разные кристаллических механизмы , которые определяют внешний вид и свойство соединения. Четыре комбинации:

    Все полиморфные состоят из слоев октаэдрических блоков гидроксида алюминия с алюминиевым атомом в центре и гидроксильных групп на сторонах, с водородными связями , удерживающих слои вместе. Полиморфизм различается в том , как слои укладывают вместе, с механизмами молекул и слоев , определенных кислотностью , наличие ионов ( в том числе соли ) и поверхностью минералов форм вещества на. В большинстве случаев, гиббсит является наиболее химически стабильной формой гидроксида алюминия. Все формы Al (OH) 3 кристаллов гексагональные.

    производство

    Практически весь гидроксид алюминия используется в коммерческих целях производится с помощью способа Байера , который включает растворение боксита в гидроксиде натрия при температурах до 270 ° C (518 ° F). Отходы твердых вещества, бокситы хвостохранилища , удаляют и гидроксид алюминия осаждают из раствора оставшегося алюмината натрия . Этот гидроксид алюминия может быть преобразован в оксид алюминия или оксид алюминия путем прокаливания .

    Остаток или боксит хвостохранилище , который является в основном оксидом железа, сильно каустический из - за остаточный гидроксид натрия. Это исторически хранится в лагунах; это привело к Ajka глиноземного завода аварии в 2010 году в Венгрии, где плотина разрывной привела к утопления девяти человек. Дополнительные 122 искали лечение химических ожогов. Грязь загрязнена 40 квадратных километров (15 квадратных миль) земли и достигли Дуная . В то время как грязь считается нетоксичным из - за низких уровней тяжелых металлов, связанное с Взвесь имела рН 13.

    Пользы

    Одним из основных видов использования гидроксида алюминия в качестве сырья для производства других соединений алюминия: специальность прокаленных оксидов алюминия, сульфат алюминия , хлорида полиалюминиевого, хлорид алюминия , цеолиты , алюминат натрия , активированный оксид алюминия, и нитрат алюминия .

    Свежеосажденного алюминий образует гидроксид гели , которые являются основанием для применения алюминиевых солей в качестве флокулянтов при очистке воды. Этот гель кристаллизует со временем. Гели гидроксида алюминия может быть обезвожены (например , с использованием смешивающимися с водой неводных растворителей , как этанол ) с получением аморфного порошка гидроксида алюминия, который легко растворяется в кислотах. Алюминиевый порошок гидроксида , который был нагрет до повышенной температуры в тщательно контролируемых условиях , что известно как активированный оксид алюминия , и используется в качестве осушителя , в качестве адсорбента при очистке газов, в качестве Клауса носителя катализатора для очистки воды, а также в качестве адсорбента для катализатора в процессе производства полиэтилена с помощью процесса Sclairtech.

    Огнестойкий материал

    Гидроксид алюминия также находит применение в качестве огнезащитного наполнителя для полимерных применений в аналогичном образе до гидроксида магния и смесей huntite и гидромагнезита . Он разлагается при температуре около 180 ° C (356 ° F), поглощает значительное количество тепла в процессе и испуская водяной пар. В дополнение к ведет себя как антипирен, она очень эффективна в качестве антидымная в широком диапазоне полимеров, в особенности в полиэфиры, акрилы, сополимер этилена и винилацетата, эпоксиды, ПВХ и резины.

    фармацевтическая

    Под общим названием «algeldrate», гидроксид алюминия используется в качестве антацидов в организме человека и животных ( в основном кошек и собак). Предпочтительно , по сравнению с другими альтернативами , такими как бикарбонат натрия , поскольку Al (OH) 3 , будучи нерастворимыми, не приводит к увеличению рН желудка выше 7 и , следовательно, не вызывает секрецию избытка кислоты в желудке. Торговые названия включают Alu-Cap, Aludrox, гавискон или Pepsamar. Он вступает в реакцию с избытком кислоты в желудке, что снижает кислотность содержимого желудка, которое может облегчить симптомы язвы , изжоги или диспепсии . Такие продукты могут вызывать запор , потому что ионы алюминия ингибируют сокращени гладких мышечных клеток в желудочно - кишечном тракте, замедление перистальтики и удлинение времени , необходимое для стула , чтобы пройти через толстую кишку . Некоторые такие продукты (такие , как Маалокс ) сформулированы так, чтобы свести к минимуму таких эффектов путем включения равных концентраций гидроксида магния или карбонат магния , которые уравновешивающая слабительные эффекты.

    Это соединение также используются для контроля гиперфосфатемии (повышенный фосфата , или фосфора, уровни в крови) у людей и животных , страдающих от почечной недостаточности. Как правило, почка фильтровать избыток фосфат из крови, но почечная недостаточность может привести к накоплению фосфата. Соль алюминия, при попадании в организме, связывается с фосфатом в кишечнике и уменьшить количество фосфора , которое может быть поглощено.

    Осажденный гидроксид алюминия включен в качестве адъюванта в некоторых вакцинах (например , вакцины против сибирской язвы ). Один из хорошо известных марок гидроксида алюминия в качестве адъюванта является Alhydrogel, сделанный Brenntag Biosector. Так как она поглощает белка хорошо, он также функционирует для стабилизации вакцин, предотвращая белки в вакцине от осаждения или прилипания к стенкам контейнера при хранении. Гидроксид алюминия иногда называют « квасцы », термин , как правило , зарезервирован для одного из нескольких сульфатов.

    Составы вакцин , содержащих гидроксид алюминия стимулируют иммунную систему путем индукции высвобождения мочевой кислоты , иммунологической опасности сигнала. Это сильно привлекает определенные типы моноцитов , которые дифференцируются в дендритные клетки . Дендритные клетки подобрать антиген, отнести его к лимфатическим узлам , а также стимулировать Т - клетки и В - клетки . Это , как представляется , способствует индукции хорошего Th3 ответа, поэтому полезно для иммунизации против патогенов, которые блокируются антителами. Тем не менее, он имеет мало возможностей стимулировать клеточные (Th2) иммунные реакции, имеющие важное значение для защиты от многих патогенных микроорганизмов, не является полезным , когда антиген пептида -На.

    Потенциальные побочные эффекты

    В 1960 - е и 1970 - е годы было предположение , что алюминий был связан с различными неврологическими расстройствами , включая болезнь Альцгеймера . С тех пор, многочисленные эпидемиологические исследования не обнаружили никакой связи между воздействием алюминия и неврологическими расстройствами.

    Рекомендации

    внешняя ссылка

    ru.qwe.wiki

    Гидроксид алюминия: свойства и все характеристики

    Характеристики и физические свойства гидроксида алюминия

    Гидроксид алюминия существует в виде четырех полиморфных модификаций, каждую из которых можно выделить при конкретной температуре.

    Рис. 1. Гидроксид алюминия. Внешний вид.

    Основные характеристики гидроксида алюминия приведены в таблице ниже:

    Молекулярная формула

    Al(OH)3

    Молярная масса, г/моль

    78

    Плотность, г/см3

    2,42

    Температура плавления, oС

    300

    Получение гидроксида алюминия

    Гидроксид алюминия выпадает в виде студенистого осадка при действии щелочей на растворы солей алюминия и легко образует коллоидные растворы.

    AlCl3 + 3NaOH = Al(OH)3↓ + 3NaCl.

    Химические свойства гидроксида алюминия

    Гидроксид алюминия – типичный амфотерный гидроксид. С кислотами он образует соли, содержащие катион алюминия, со щелочами – алюминаты:

    Al(OH)3 + 3HCldilute = AlCl3 + 3H2O;

    Al(OH)3+ NaOH = NaAlO2 + 2H2O.

    При взаимодействии гидроксида алюминия с водными растворами щелочей образуются гидроксоалюминаты:

    Al(OH)3 + NaOHconc = Na[Al(OH)4].

    При нагревании до температуры выше 575oС гидроксид алюминия разлагается:

    2Al(OH)3 = Al2O3 + 3H2O.

    Гидроксид алюминия не реагирует с гидратом аммиака, хлоридомаммония, диоксидами углерода и серы, сероводородом.

    Применение гидроксида алюминия

    За счет развитой поверхности, гидроксид алюминия выступает в качестве хорошего сорбента, поэтому его используют в фильтрах для очистки воды. Кроме этого он нашел применение в фармации, медицине и при производстве пластмасс.

    Примеры решения задач

    Понравился сайт? Расскажи друзьям!

    ru.solverbook.com

    Алюминия Гидроксид: формула, получение, разложение, химические свойства

    Закрыть
    • Болезни
      • Инфекционные и паразитарные болезни
      • Новообразования
      • Болезни крови и кроветворных органов
      • Болезни эндокринной системы
      • Психические расстройства
      • Болезни нервной системы
      • Болезни глаза
      • Болезни уха
      • Болезни системы кровообращения
      • Болезни органов дыхания
      • Болезни органов пищеварения
      • Болезни кожи
      • Болезни костно-мышечной системы
      • Болезни мочеполовой системы
      • Беременность и роды
      • Болезни плода и новорожденного
      • Врожденные аномалии (пороки развития)
      • Травмы и отравления
    • Симптомы
      • Системы кровообращения и дыхания
      • Система пищеварения и брюшная полость
      • Кожа и подкожная клетчатка
      • Нервная и костно-мышечная системы
      • Мочевая система
      • Восприятие и поведение
      • Речь и голос
      • Общие симптомы и признаки
      • Отклонения от нормы
    • Диеты
      • Снижение веса
      • Лечебные
      • Быстрые
      • Для красоты и здоровья
      • Разгрузочные дни
      • От профессионалов
      • Монодиеты
      • Звездные
      • На кашах
      • Овощные
      • Детокс-диеты
      • Фруктовые
      • Модные
      • Для мужчин
      • Набор веса
      • Вегетарианство
      • Национальные
    • Лекарства
      • Антибиотики
      • Антисептики
      • Биологически активные добавки
      • Витамины
      • Гинекологические
      • Гормональные
      • Дерматологические
      • Диабетические
      • Для глаз
      • Для крови
      • Для нервной системы
      • Для печени
      • Для повышения потенции
      • Для полости рта
      • Для похудения
      • Для суставов
      • Для ушей
      • Желудочно-кишечные
      • Кардиологические
      • Контрацептивы
      • Мочегонные
      • Обезболивающие
      • От аллергии
      • От кашля
      • От насморка
      • Повышение иммунитета
      • Противовирусные
      • Противогрибковые
      • Противомикробные
      • Противоопухолевые
      • Противопаразитарные
      • Противопростудные
      • Сердечно-сосудистые
      • Урологические
      • Другие лекарства
      ДЕЙСТВУЮЩИЕ ВЕЩЕСТВА
    • Врачи
    • Клиники
    • Справочник
      • Аллергология
      • Анализы и диагностика
      • Беременность
      • Витамины
      • Вредные привычки
      • Геронтология (Старение)
      • Дерматология
      • Дети
      • Женское здоровье
      • Инфекция
      • Контрацепция
      • Косметология
      • Народная медицина
      • Обзоры заболеваний
      • Обзоры лекарств
      • Ортопедия и травматология
      • Питание
      • Пластическая хирургия
      • Процедуры и операции
      • Психология
      • Роды и послеродовый период
      • Сексология
      • Стоматология
      • Травы и продукты
      • Трихология
      • Другие статьи
    • Словарь терминов
      • [А] Абазия .. Ацидоз
      • [Б] Базофилы .. Богатая тромбоцитами плазма
      • [В] Вазопрессин .. Выкидыш
      • [Г] Галлюциногены .. Грязи лечебные
      • [Д] Деацетилазы гистонов .. Дофамин
      • [Ж] Железы .. Жиры
      • [И] Иммунитет .. Искусственная кома
      • [К] Каверна .. Кумарин
      • [Л] Лапароскоп .. Лучевая терапия
      • [М] Макрофаги .. Мутация
      • [Н] Наркоз .. Нистагм
      • [О]

    medside.ru


    Смотрите также