Гормон что это


Гормоны — Википедия

Гормо́ны (др.-греч. ὁρμάω — двигаю, побуждаю) — биологически активные вещества органической природы, вырабатывающиеся в специализированных клетках желёз внутренней секреции (эндокринные железы), поступающие в кровь, связывающиеся с рецепторами клеток-мишеней и оказывающие регулирующее влияние на обмен веществ и физиологические функции. Гормоны служат гуморальными (переносимыми с кровью) регуляторами определённых процессов в различных органах.

Существуют и другие определения, согласно которым трактовка понятия «гормон» более широка: «сигнальные химические вещества, вырабатываемые клетками тела и влияющие на клетки других частей тела». Это определение представляется предпочтительным, так как охватывает многие традиционно причисляемые к гормонам вещества: гормоны животных, лишённых кровеносной системы (например, экдизоны круглых червей и др.), гормоны позвоночных, которые вырабатываются не в эндокринных железах (простагландины, эритропоэтин и др.), а также гормоны растений.

Гормоны оказывают дистантное действие: попадая с током крови в различные органы и системы организма, они регулируют деятельность органа, расположенного вдали от синтезирующей их железы, при этом даже очень малое количество гормонов способно вызвать значительные изменения деятельности органа.

Начало активному изучению эндокринных желез и гормонов было положено английским врачом Т. Аддисоном в 1855 году. Аддисон был первым, кто дал описание бронзовой болезни, признаком которой было специфическое окрашивание кожи, а причиной — дисфункция надпочечников.

Другим основоположником эндокринологии является французский медик К. Бернар, который изучал процессы внутренней секреции и соответствующие железы организма — органы, секретирующие в кровь те или иные вещества.

Впоследствии свой вклад в данную отрасль науки внес другой французский врач — Ш. Броун-Секар, увязавший развитие определенных заболеваний с недостаточностью функции желез внутренней секреции и показавший, что при терапии указанных болезней могут быть успешно использованы экстракты соответствующих желез.

Согласно имеющимся на современном этапе результатам исследований, недостаточный или избыточный синтез гормонов негативно влияет на молекулярные механизмы, лежащие в основе регулирования обменных процессов в организме, а это, в свою очередь, способствует развитию практически всех заболеваний желез внутренней секреции.

Собственно термин «гормон» был впервые использован в работах английских физиологов У. Бейлисса и Э. Старлинга в 1902 году.

Исследователи ввели его в ходе изучения гормона секретина, открытого ими же тремя годами ранее. Этот гормон вырабатывается в двенадцатиперстной кишке и отвечает за интенсивность выработки некоторых пищеварительных соков. На данный момент науке известно более 100 вырабатываемых железами внутренней секреции веществ, для которых характерна гормональная активность и которые регулируют обменные процессы.

Внешние или внутренние раздражители того или иного рода воздействуют на рецепторы организма и порождают в них импульсы, поступающие сначала в центральную нервную систему, а затем в гипоталамус.

В данном отделе мозга вырабатываются первичные активные вещества удаленного гормонального действия — т. н. рилизинг-факторы, которые, в свою очередь, направляются к гипофизу. Характерной их особенностью является тот факт, что их транспортировка по назначению осуществляется не с общим током крови, а посредством портальной системы сосудов.

Под действием рилизинг-факторов либо ускоряется, либо замедляется выработка и выделение тропных гормонов гипофиза.

Последние, попав в кровь и достигнув с ней конкретной эндокринной железы, оказывают влияние на синтез требуемого гормона.

На последнем этапе процесса гормон доставляется по системе кровообращения к тем или иным специализированным органам либо тканям (т. н. «мишеням») и вызывает определенные ответные реакции в организме, будь они физиологическими или, к примеру, химическими.

Заключительный этап, связанный с воздействием гормонов на обмен веществ внутри клетки, в течение довольно продолжительного времени являлся наименее изученным из всех составляющих вышеописанного процесса.

Ныне известно, что в соответствующих тканях-мишенях имеются специфические химические структуры с участками, предназначенными для связывания гормонов — т. н. гормональные рецепторы.

В качестве спецучастков выступают, как правило, углеводные фрагменты гликопротеинов и ганглиозидов.

Связывание гормонов рецепторами вызывает определенные биохимические реакции, за счет чего, собственно, и реализуется итоговый эффект гормона.

Локализация рецепторов при этом зависит от природы гормона: в случае стероидной природы рецепторы расположены в ядре, а в случае белковой или пептидной — на наружной поверхности (плазматической мембране). Вне зависимости от расположения между рецептором и гормоном всегда существует четкое структурное и пространственное соответствие.

Используются в организме для поддержания его гомеостаза, а также для регуляции многих функций (роста, развития, обмена веществ, реакции на изменения условий среды).

Эффекты гормонов[править | править код]

В соответствии с современными представлениями, для гормонов характерен ряд специфических особенностей их биологического действия:

  1. эффекты гормонов проявляются в крайне малых их концентрациях — в диапазоне от 10−6 до 10−12 М;
  2. реализация гормонального воздействия осуществляется через белковые рецепторы и внутриклеточные вторичные посредники, называемые также мессенджерами;
  3. эффекты гормонов осуществляются посредством изменения скорости либо ферментативного катализа, либо синтеза ферментов — хотя сами гормоны не являются ни ферментами, ни коферментами;
  4. центральная нервная система контролирует действие гормонов и оказывает определяющее влияние на их воздействие на организм;
  5. между гормонами и железами внутренней секреции, их вырабатывающими, существует как прямая, так и обратная связь, объединяющая их в общую систему.

Гормоны млекопитающих оказывают следующие эффекты на организм:

  • стимулируют или ингибируют рост
  • влияют на настроение
  • стимулируют или ингибируют апоптоз
  • стимулируют или ингибируют иммунную систему
  • регулируют метаболизм
  • подготавливают организм к спариванию, борьбе, бегу и другим активным действиям
  • подготавливают организм к следующему жизненному периоду — половому созреванию, родам и к менопаузе
  • контролируют репродуктивный цикл
  • вызывают чувство голода и насыщения
  • вызывают половое влечение

Также гормоны регулируют выработку и секрецию других гормонов. Гормоны также поддерживают постоянство внутренней среды организма (гомеостаз).

Все гормоны реализуют своё воздействие на организм или на отдельные органы и системы при помощи специальных рецепторов к этим гормонам. Рецепторы к гормонам делятся на 3 основных класса:

Для всех рецепторов характерен феномен саморегуляции чувствительности посредством механизма обратной связи — при низком уровне определённого гормона автоматически компенсаторно возрастает количество рецепторов в тканях и их чувствительность к этому гормону — процесс, называемый сенсибилизацией (сенситизацией) рецепторов. И наоборот, при высоком уровне определённого гормона происходит автоматическое компенсаторное понижение количества рецепторов в тканях и их чувствительности к этому гормону — процесс, называемый десенсибилизацией (десенситизацией) рецепторов.

Увеличение или уменьшение выработки гормонов, а также снижение или увеличение чувствительности гормональных рецепторов и нарушение гормонального транспорта приводит к эндокринным заболеваниям.

Когда гормон, находящийся в крови, достигает клетки-мишени, он вступает во взаимодействие со специфическими рецепторами; рецепторы «считывают послание» организма, и в клетке начинают происходить определенные перемены. Каждому конкретному гормону соответствуют исключительно «свои» рецепторы, находящиеся в конкретных органах и тканях — только при взаимодействии гормона с ними образуется гормон-рецепторный комплекс.

Механизмы действия гормонов могут быть разными. Одну из групп составляют гормоны, которые соединяются с рецепторами, находящимися внутри клеток — как правило, в цитоплазме. К ним относятся гормоны с липофильными свойствами — например, стероидные гормоны (половые, глюко- и минералокортикоиды), а также гормоны щитовидной железы. Будучи жирорастворимыми, эти гормоны легко проникают через клеточную мембрану и начинают взаимодействовать с рецепторами в цитоплазме или ядре. Они слаборастворимы в воде, при транспорте по крови связываются с белками-носителями.

Считается, что в этой группе гормонов гормон-рецепторный комплекс выполняет роль своеобразного внутриклеточного реле — образовавшись в клетке, он начинает взаимодействовать с хроматином, который находится в клеточных ядрах и состоит из ДНК и белка, и тем самым ускоряет или замедляет работу тех или иных генов. Избирательно влияя на конкретный ген, гормон изменяет концентрацию соответствующей РНК и белка, и вместе с тем корректирует процессы метаболизма.

Биологический результат действия каждого гормона весьма специфичен. Хотя в клетке-мишени гормоны изменяют обычно менее 1 % белков и РНК, этого оказывается вполне достаточно для получения соответствующего физиологического эффекта.

Большинство других гормонов характеризуются тремя особенностями:

  • они растворяются в воде;
  • не связываются с белками-носителями;
  • начинают гормональный процесс, как только соединяются с рецептором, который может находиться в ядре клетки, её цитоплазме или располагаться на поверхности плазматической мембраны.

В механизме действия гормон-рецепторного комплекса таких гормонов обязательно участвуют посредники, которые индуцируют ответ клетки. Наиболее важные из таких посредников — цАМФ (циклический аденозинмонофосфат), инозитолтрифосфат, ионы кальция.

Так, в среде, лишенной ионов кальция, или в клетках с недостаточным их количеством действие многих гормонов ослабляется; при применении веществ, увеличивающих внутриклеточную концентрацию кальция, возникают эффекты, идентичные воздействию некоторых гормонов.

Участие ионов кальция как посредника обеспечивает воздействие на клетки таких гормонов, как вазопрессин и катехоламины.

Выполнив свою задачу, гормоны либо расщепляются в клетках-мишенях или в крови, либо транспортируются в печень, где расщепляются, либо, наконец, удаляются из организма в основном с мочой (например, адреналин).

В настоящее время имеются довольно подробные сведения о химической природе практически всех гормонов, известных науке, однако общие принципы их номенклатуры все еще не разработаны. Структуру того или иного вещества точно отражает его химическое наименование, однако оно, как правило, громоздко и сложно в употреблении и запоминании; в силу этого чаще применяются тривиальные наименования, которые указывают на источник (к примеру, «инсулин») или на функцию гормона в организме (например, пролактин). Свои рабочие названия имеются у всех гипоталамических гормонов и некоторых гормонов гипофиза.

В том, что касается подразделения гормонов на классы, известна, в частности, анатомическая классификация, которая ассоциирует гормоны с конкретными железами, выполняющими их синтез. По этому основанию выделяют гормоны гипоталамуса, гипофиза, надпочечников и т. п. Следует, однако, заметить, что данная классификация не вполне надежна, поскольку гормоны могут, к примеру, синтезироваться в одной железе, а выбрасываться в кровь — из другой. В связи с этим была разработана альтернативная система, которая опирается на химическую природу гормонов[1].

По химическому строению известные гормоны позвоночных делят на основные классы:

  1. Стероиды
  2. Производные полиеновых (полиненасыщенных) жирных кислот
  3. Производные аминокислот
  4. Белково-пептидные соединения

Структура гормонов позвоночных животных, точнее её основы, встречается у беспозвоночных, растений и одноклеточных организмов. По-видимому, структура гормонов возникла 3,5 млрд лет назад, но приобрела гормональные функции лишь в последние 500 млн лет в филогенезе животного мира. При этом в процессе эволюции изменилась не только структура, но и функции гормональных соединений (Баррингтон, 1987). Наибольшему изменению подверглось химическое строение белково-пептидных гормонов. В большинстве случаев, гомологичный гормон высших позвоночных обладает способностью воспроизводить физиологические эффекты у низших позвоночных, однако обратная картина наблюдается значительно реже[2].

Стероидные гормоны[править | править код]

Гормоны этого класса — полициклические химические соединения липидной природы, в основе структуры которых находится стерановое ядро (циклопентанпергидрофенантрен), конденсированное из трёх насыщенных шестичленных колец (обозначают латиницей: A, B и C) и одного насыщенного пятичленного кольца (D). Стерановое ядро обусловливает общность (единство) полиморфного класса стероидных гормонов, а сочетание относительно небольших модификаций стеранового скелета определяет расхождение свойств гормонов этого класса[2].

Производные жирных кислот[править | править код]

Данные соединения, отличающиеся нестабильностью и оказывающие местное воздействие на находящиеся поблизости от места их выработки клетки, называются также эйкозаноидами. К ним относятся простагландины, тромбоксаны и лейкотриены.

Производные аминокислот[править | править код]

Этот класс гормонов составлен преимущественно из производных тирозина: адреналин и норадреналин, тироксин и т. д. Первые два синтезируются надпочечниками, третий — щитовидной железой.

Белковые и пептидные гормоны[править | править код]

К числу белково-пептидных относятся гормоны поджелудочной железы (глюкагон, инсулин), а также гипоталамуса и гипофиза (гормон роста, кортикотропин и др.). В их состав может входить самое разнообразное количество аминокислотных остатков — от 3 до 250 и более[1].

Гормоны у человека вырабатываются всю жизнь. Список наиболее важных:

Структура Название Сокращение Место синтеза Механизм действия Физиологическая роль
триптамин мелатонин (N-ацетил-5-метокситриптамин) эпифиз Регуляция сна
триптамин серотонин 5-HT энтерохромаффинные клетки Регуляция чувствительности болевой системы, «гормон счастья»
производное тирозина тироксин T4 щитовидная железа ядерный рецептор Активация процессов метаболизма
производное тирозина трийодтиронин T3 щитовидная железа ядерный рецептор Стимулирование роста и развития организма
производное тирозина (катехоламин) адреналин (эпинефрин) мозговой слой надпочечников Мобилизация организма для устранения угрозы
производное тирозина (катехоламин) норадреналин (норэпинефрин) мозговой слой надпочечников
производное тирозина (катехоламин) дофамин DA гипоталамус
пептид антимюллеров гормон (ингибирующее вещество Мюллера) АМГ клетки Сертоли
пептид адипонектин жировая ткань
пептид адренокортикотропный гормон (кортикотропин) АКТГ передняя доля гипофиза цАМФ
пептид ангиотензин, ангиотензиноген печень IP3
пептид антидиуретический гормон (вазопрессин) АДГ гипоталамус (накапливается в задней доле гипофиза) Снижение кровяного давления(путём сужения сосудов), снижение количества мочи путём повышения её концентрации
пептид предсердный натрийуретический пептид АНФ Секреторные кардиомиоциты правого предсердия сердца цГМФ
пептид глюкозозависимый инсулинотропный полипептид ГИП K-клетки двенадцатиперстной и тощей кишок
пептид кальцитонин щитовидная железа цАМФ Снижение количества кальция в крови
пептид кортикотропин-высвобождающий гормон АКГГ гипоталамус цАМФ
пептид холецистокинин (панкреозимин) CCK I-клетки двенадцатиперстной и тощей кишок
пептид эритропоэтин почки
пептид фолликулостимулирующий гормон ФСГ передняя доля гипофиза цАМФ
пептид гастрин G-клетки желудка
пептид грелин (гормон голода) Эпсилон-клетки панкреатических островков, гипоталамус
пептид глюкагон (антагонист инсулина) альфа-клетки панкреатических островков цАМФ Стимулирует в печени превращение гликогена в глюкозу(регулирует таким образом количество глюкозы)
пептид гонадотропин-высвобождающий гормон (люлиберин) GnRH гипоталамус IP3
пептид соматотропин-высвобождающий гормон ("гормон роста"-высвобождающий гормон, соматокринин) GHRH передняя доля гипофиза IP3
пептид человеческий хорионический гонадотропин hCG, ХГЧ плацента цАМФ
пептид плацентарный лактоген ПЛ, HPL плацента
пептид соматотропный гормон (гормон роста) GH or hGH передняя доля гипофиза
пептид ингибин
пептид инсулин бета-клетки панкреатических островков Тирозинкиназа, IP3 Стимулирует в печени превращение глюкозы в гликоген(регулирует таким образом количество глюкозы)
пептид инсулиноподобный фактор роста (соматомедин) ИФР, IGF Тирозинкиназа
пептид лептин (гормон насыщения) жировая ткань
пептид лютеинизирующий гормон ЛГ, LH передняя доля гипофиза цАМФ
пептид меланоцитстимулирующий гормон МСГ передняя доля гипофиза цАМФ
пептид нейропептид Y
пептид окситоцин гипоталамус (накапливается в задней доле гипофиза) IP3 Стимулирует лактацию и сокращающие движения матки
пептид панкреатический полипептид PP PP-клетки панкреатических островков
пептид паратиреоидный гормон (паратгормон) PTH паращитовидная железа цАМФ
пептид пролактин передняя доля гипофиза
пептид релаксин
пептид секретин SCT S-клетки слизистой оболочки тонкой кишки
пептид соматостатин SRIF дельта-клетки панкреатических островков, гипоталамус
пептид тромбопоэтин печень, почки
пептид тироид-стимулирующий гормон передняя доля гипофиза цАМФ
пептид тиреолиберин TRH гипоталамус IP3
глюкокортикоид кортизол кора надпочечников прямой
минералокортикоид альдостерон кора надпочечников прямой
половой стероид (андроген) тестостерон яички ядерный рецептор Регулирует развитие мужских половых признаков
половой стероид (андроген) дегидроэпиандростерон ДГЭА кора надпочечников ядерный рецептор
половой стероид (андроген) андростендиол яичники, яички прямой
половой стероид (андроген) дигидротестостерон множественное прямой
половой стероид (эстроген) эстрадиол фолликулярный аппарат яичников, яички прямой
половой стероид (прогестин) прогестерон жёлтое тело яичников ядерный рецептор Регуляция менструального цикла у женщин, обеспечение секреторных изменений в эндометрии матки во время второй половины месячного женского полового цикла
стерин кальцитриол почки прямой
эйкозаноид простагландины семенная жидкость
эйкозаноид лейкотриены белые кровяные клетки
эйкозаноид простациклин эндотелий
эйкозаноид тромбоксан тромбоциты
  1. 1 2 Березов Т. Т., Коровкин Б. Ф. Биологическая химия. — 2-е изд. — М.: Медицина, 1990. — 528 с.
  2. 1 2 Розен В. Б. Основы эндокринологии. — 3-е изд., перераб. и доп. — М.: Медицина, 1994. — С. 40—93. — 384 с. — 5000 экз. — ISBN 5-211-03251-9.

ru.wikipedia.org

ГОРМОНЫ - это... Что такое ГОРМОНЫ?

  • ГОРМОНЫ — (от греч. hormao привожу в движение, побуждаю), биологически активные вещества, выделяемые железами внутр. секреции или скоплениями специа лизир. клеток организма и оказывающие целенаправленное действие на др. органы и ткани. Термин «Г.»… …   Биологический энциклопедический словарь

  • ГОРМОНЫ — ГОРМОНЫ, химические вещества, вырабатываемые живыми клетками, которые влияют на метаболизм клеток в других частях тела. У МЛЕКОПИТАЮЩИХ гормоны вырабатываются железами ЭНДОКРИННОЙ СИСТЕМЫ и выделяются непосредственно в кровь. Они осуществляют… …   Научно-технический энциклопедический словарь

  • ГОРМОНЫ — (от греч. hormao возбуждаю), группа биологически активных веществ сложной химической природы (белки, аминокислоты, полипептиды, стероиды и др.), вырабатываемых в организме железами внутренней секреции (эндокринными железами) и оказывающих… …   Экологический словарь

  • ГОРМОНЫ — (от греческого hormao возбуждаю, привожу в движение), биологически активные вещества, вырабатываемые в организме специализированными клетками или органами (железами внутренней секреции) и оказывающие влияние на деятельность других органов и… …   Современная энциклопедия

  • ГОРМОНЫ — (от греч. hormao возбуждаю привожу в движение), биологически активные вещества, вырабатываемые в организме специализированными клетками или органами (железами внутренней секреции) и оказывающие целенаправленное влияние на деятельность других… …   Большой Энциклопедический словарь

  • Гормоны — (от греческого hormao возбуждаю, привожу в движение), биологически активные вещества, вырабатываемые в организме специализированными клетками или органами (железами внутренней секреции) и оказывающие влияние на деятельность других органов и… …   Иллюстрированный энциклопедический словарь

  • гормоны — ов, мн. hormone f., англ. hormone. Биологически активные вещества, вырабатываемые в организме и участвующие в регуляции всех жизненно важных процессов. БАС 2. Гормонный ая, ое. Крысин 1998. Лекс. Гранат: гормоны; Уш. 1935: гормо/н, гормона/льный; …   Исторический словарь галлицизмов русского языка

  • гормоны — * гармоны * hormones высокоспецифичные биологически активные органические вещества, являющиеся регуляторами важнейших жизненных процессов. Г. вырабатываются в организме высокоспециализированными клетками или органами (эндокринными железами, или… …   Генетика. Энциклопедический словарь

  • гормоны — – группа веществ, синтезируемых клетками желез внутренней секреции и оказывающих регулирующее действие на обменные процессы в организме …   Краткий словарь биохимических терминов

  • ГОРМОНЫ — (от греч. hormao возбуждаю), син. инкреты, термин, предложенный Стар лингом (Starling) для обозначения специфических хим. продуктов желез внутренней секреции, выделяющихся прямо в ток крови или в лимфу, а не при посредстве выводных протоков в ту… …   Большая медицинская энциклопедия

  • гормоны — Высокоспецифичные биологически активные вещества, выделяемые одной частью организма и переносимые в др. его части, где они оказывают свое биологическое действие: у животных Г. вырабатываются железами внутренней секреции (эндокринная система… …   Справочник технического переводчика

  • dic.academic.ru

    Эндокринная система — Википедия

    Эндокри́нная систе́ма — система регуляции деятельности внутренних органов посредством гормонов, выделяемых эндокринными клетками непосредственно в кровь либо диффундирующих через межклеточное пространство в соседние клетки.

    Не́йроэндокри́нная (эндокринная) система координирует и регулирует деятельность практически всех органов и систем организма, обеспечивает его адаптацию к постоянно изменяющимся условиям внешней и внутренней среды, сохраняя постоянство внутренней среды, необходимое для поддержания нормальной жизнедеятельности данного индивидуума. Имеются чёткие указания на то, что осуществление перечисленных функций нейроэндокринной системы возможно только в тесном взаимодействии с иммунной системой[1].

    Эндокринная система делится на гландулярную эндокринную систему (или гландулярный аппарат), в которой эндокринные клетки собраны вместе и формируют железу внутренней секреции, и диффузную эндокринную систему. Железа внутренней секреции производит гландулярные гормоны, к которым относятся все стероидные гормоны, гормоны щитовидной железы и многие пептидные гормоны. Диффузная эндокринная система представлена рассеянными по всему организму эндокринными клетками, продуцирующими гормоны, называемые агландулярными — (за исключением кальцитриола) пептиды. Практически в любой ткани организма имеются эндокринные клетки.

    • Принимает участие в гуморальной (химической) регуляции функций организма и координирует деятельность всех органов и систем.
    • Обеспечивает сохранение гомеостаза организма при меняющихся условиях внешней среды.
    • Совместно с нервной и иммунной системами регулирует:
      • рост;
      • развитие организма;
      • его половую дифференцировку и репродуктивную функцию;
      • принимает участие в процессах образования, использования и сохранения энергии.
    • В совокупности с нервной системой гормоны принимают участие в обеспечении:

    Представлена железами внутренней секреции, осуществляющими синтез, накопление и высвобождение в кровоток различных биологически активных веществ (гормонов, нейромедиаторов и других). Классические железы внутренней секреции: эпифиз, гипофиз, щитовидная, паращитовидная железы, островковый аппарат поджелудочной железы, корковое и мозговое вещество надпочечников, яички, яичники относят к гландулярной эндокринной системе. В гландулярной системе эндокринные клетки сконцентрированы в пределах одной железы. Центральная нервная система принимает участие в регуляции процесса секреции гормонов всех эндокринных желез, а гормоны по механизму обратной связи влияют на функцию ЦНС, модулируя её активность и состояние. Нервная регуляция деятельности периферических эндокринных функций организма осуществляется не только посредством тропных гормонов гипофиза (гипофизарные и гипоталамические гормоны), но и через влияние автономной (или вегетативной) нервной системы. Кроме того, в самой центральной нервной системе секретируется определённое количество биологически активных веществ (моноаминов и пептидных гормонов), многие из которых также секретируются эндокринными клетками желудочно-кишечного тракта[1]. Железы внутренней секреции (эндокринные железы) — органы, которые вырабатывают специфические вещества и выделяют их непосредственно в кровь или лимфу. Этими веществами являются гормоны — химические регуляторы, необходимые для жизни. Эндокринные железы могут быть как самостоятельными органами, так и производными эпителиальных (пограничных) тканей.

    Гипоталамо-гипофизарная система[править | править код]

    Гипоталамус и гипофиз имеют секреторные клетки, при этом гипоталамус считается элементом важной «гипоталамо-гипофизарной системы».

    В гипоталамусе секретируются собственно гипоталамические (вазопрессин или антидиуретический гормон, окситоцин, нейротензин) и биологически активные вещества, угнетающие или усиливающие секреторную функцию гипофиза (соматостатин, тиролиберин или тиреотропин-высвобождающий гормон, люлиберин или гонадолиберин или гонадотропин-высвобождающий гормон, кортиколиберин или кортикотропин-высвобождающий гормон и соматолиберин или соматотропин-высвобождающий гормон)[1]. Одной из важнейших желез организма является гипофиз, который осуществляет контроль над работой большинства желез внутренней секреции. Гипофиз — небольшая, весом менее одного грамма, но очень важная для жизни железа. Она расположена в углублении в основании черепа, связана с гипоталамической областью головного мозга ножкой и состоит из трёх долей — передней (железистая или аденогипофиз), средней или промежуточной (она развита меньше других) и задней (нейрогипофиз). По важности выполняемых в организме функций гипофиз можно сравнить с ролью дирижёра оркестра, который показывает, когда тот или иной инструмент должен вступать в игру. Гипоталамические гормоны (вазопрессин, окситоцин, нейротензин) по гипофизарной ножке стекают в заднюю долю гипофиза, где депонируются и откуда при необходимости выбрасываются в кровоток. Гипофизотропные гормоны гипоталамуса, высвобождаясь в портальную систему гипофиза, достигают клеток передней доли гипофиза, непосредственно влияя на их секреторную активность, угнетая или стимулируя секрецию тропных гормонов гипофиза, которые, в свою очередь, стимулируют работу периферических желёз внутренней секреции[1].

    Передняя доля гипофиза — важнейший орган регулирования основных функций организма: именно здесь вырабатываются шесть важнейших тропных гормонов, регулирующих секреторную активность периферических эндокринных желез — тиреотропный гормон (ТТГ), адренокортикотропный гормон (АКТГ), соматотропный гормон (СТГ или гормон роста), лактотропный гормон (пролактин) и два гонадотропных гормона, регулирующих функции периферических половых желёз: фолликулостимулирующий гормон (ФСГ) и лютеинизирующий гормон (ЛГ). Тиреотропин ускоряет или замедляет работу щитовидной железы, АКТГ регулирует работу коркового вещества надпочечников, соматотропин (гормон роста) опосредованно (через соматомедины или инсулиноподобные факторы роста) контролирует процессы роста и развития костной системы, хрящей и мышц. Избыточная выработка гормона роста у взрослого человека ведёт к развитию акромегалии, которая проявляется увеличением толщины костей, разрастанием хрящевой ткани (носа, ушных раковин) и костей лицевого черепа.Гипофиз тесно связан с гипоталамусом, вместе с которым является связующим звеном между мозгом, периферической нервной системой и системой кровообращения. Связь между гипофизом и гипоталамусом осуществляется с помощью разных химических веществ, которые вырабатываются в так называемых нейросекреторных клетках.

    Задняя доля гипофиза не вырабатывает собственных гормонов, её роль в организме заключается в накоплении и секреции двух важных гормонов, вырабатываемых нейросекреторными клетками ядер гипоталамуса: антидиуретического гормона (АДГ), участвующий в процессах регуляции водного баланса организма, повышая степень обратного всасывания жидкости в почках и окситоцина, который отвечает за сокращение гладких мышц и, в частности, матки во время родов.

    Щитовидная железа[править | править код]

    Щитови́дная железа́ (лат. glandula thyr(e)oidea) — эндокринная железа у позвоночных, хранящая йод и вырабатывающая йодсодержащие гормоны (йодтиронины), участвующие в регуляции обмена веществ и росте отдельных клеток, а также организма в целом — тироксин (тетрайодтиронин, T4) и трийодтиронин (T3). Щитовидная железа, вес которой колеблется от 20 до 30 г, расположена в передней части шеи и состоит из двух долей и перешейка, расположенного на уровне ΙΙ—ΙV хряща трахеи (дыхательного горла) и соединяет между собой обе доли. На задней поверхности двух долей парами расположены четыре околощитовидные железы. Снаружи щитовидная железа покрыта мышцами шеи, расположенными ниже подъязычной кости; своим фасциальным мешком железа прочно соединена с трахеей и гортанью, поэтому она перемещается вслед за движениями этих органов. Железа состоит из фолликулов — пузырьков овальной или округлой формы, которые заполнены белковым йодсодержащим веществом типа коллоида; между пузырьками располагается рыхлая соединительная ткань. Коллоид пузырьков вырабатывается эпителием и содержит гормоны, производимые щитовидной железой — тироксин (Т4) и трийодтиронин (Т3).

    Ещё один гормон, выделяемый парафолликулярными или C-клетками щитовидной железы — кальцитонин (по химической природе полипептид), регулирует в организме содержание кальция и фосфатов, а также предотвращает образование остеокластов, которые в активированном состоянии могут привести к разрушению костной ткани, и стимулирует функциональную активность и размножение остеобластов. Тем самым участвует в регуляции деятельности этих двух видов образований, именно благодаря гормону новая костная ткань образуется быстрее. Действие этого гормона прямо противоположно паратиреоидину, который вырабатывается околощитовидной железой и повышает уровень кальция в крови, усиливает его приток из костей и кишечника. С этой точки зрения действие паратиреоидина напоминает витамин D.

    Паращитовидные железы[править | править код]

    Паращитовидная железа регулирует уровень кальция в организме в узких рамках так, чтобы нервная и двигательная системы функционировали нормально. Когда уровень кальция в крови падает ниже определённого уровня, рецепторы паращитовидной железы, чувствительные к кальцию, активируются и секретируют гормон в кровь. Паратгормон стимулирует остеокласты, чтобы те выделяли в кровь кальций из костной ткани.

    Поджелудочная железа[править | править код]

    Поджелудочная железа — крупный (длиной 12—30 см) секреторный о́рган двойного действия (секретирует панкреатический сок в просвет двенадцатиперстной кишки и гормоны непосредственно в кровоток), расположен в верхней части брюшной полости, между селезёнкой и двенадцатиперстной кишкой.

    Инкреторный отдел поджелудочной железы представлен островками Лангерганса, расположенными в хвосте поджелудочной железы. У человека островки представлены различными типами клеток, вырабатывающими несколько полипептидных гормонов:

    Надпочечники[править | править код]

    На верхних полюсах обеих почек находятся небольшие железы пирамидальной формы — надпочечники. Они состоят из внешнего коркового слоя (80—90 % массы всей железы) и внутреннего мозгового вещества, клетки которого лежат группами и оплетены широкими венозными синусами. Гормональная активность обеих частей надпочечников разная. Кора надпочечников вырабатывает минералокортикоиды и гликокортикоиды, имеющие стероидную структуру. Минералокортикоиды (важнейший из них — альдостерон) регулируют ионный обмен в клетках и поддерживают их электролитическое равновесие; гликокортикоиды (например, кортизол) стимулируют распад белков и синтез углеводов. Мозговое вещество вырабатывает адреналин — гормон из группы катехоламина, который поддерживает тонус симпатической нервной системы. Адреналин часто называют гормоном борьбы или бегства, так как его выделение резко возрастает лишь в минуты опасности. Повышение уровня адреналина в крови влечёт за собой соответствующие физиологические изменения — учащается сердцебиение, сужаются кровеносные сосуды, напрягаются мышцы, расширяются зрачки. Ещё корковое вещество в небольших количествах вырабатывает мужские половые гормоны (андрогены). Если в организме возникают нарушения и андрогены начинают поступать в чрезвычайном количестве, у девочек усиливаются признаки противоположного пола. Кора и мозговое вещество надпочечников отличаются не только выработкой разных гормонов. Работа коры надпочечников активизируется центральной, а мозговое вещество — периферической нервной системой.

    Гонады[править | править код]

    Созревание и половая активность человека были бы невозможными без работы гонад, или половых желёз, к которым относятся мужские яички и женские яичники. У маленьких детей половые гормоны вырабатываются в небольших количествах, но по мере взросления организма в определённый момент наступает быстрое увеличение уровня половых гормонов, и тогда мужские гормоны (андрогены) и женские гормоны (эстрогены) вызывают у человека появление вторичных половых признаков.

    Эпифиз[править | править код]

    Функция эпифиза до конца не выяснена. Эпифиз выделяет вещества гормональной природы, серотонин, который в них же превращается в мелатонин, антигонадотропин, ослабляющий секрецию лютропина передней доли гипофиза. Наряду с антигонадотропином пинеалоциты образуют другой белковый гормон, повышающий уровень калия в крови. Из числа регуляторных пептидов наиболее важны аргинин-вазотоцин, тиролиберин, люлиберин.

    Тимус[править | править код]

    Иммунная система, в том числе и вилочковая железа (тимус) производит большое количество гормонов, которые можно подразделить на цитокины или лимфокины и тимические (или тимусные) гормоны — тимопоэтины, регулирующие процессы роста, созревания и дифференцировки Т-клеток и функциональную активность зрелых клеток иммунной системы. К цитокинам, секретируемым иммунокомпетентными клетками, относятся: гамма-интерферон, интерлейкины (1—7 и 9—12), фактор некроза опухолей, гранулоцитарный колониестимулирующий фактор, гранулоцитомакрофагальный колониестимулирующий фактор, макрофагальный колониестимулирующий фактор, лейкемический ингибиторный фактор, онкостатин М, фактор стволовых клеток и другие[1]. С возрастом тимус деградирует, заменяясь соединительнотканным образованием.

    В диффузной эндокринной системе эндокринные клетки не сконцентрированы, а рассеяны.

    Некоторые эндокринные функции выполняют печень (секреция соматомедина, инсулиноподобных факторов роста и др.), почки (секреция эритропоэтина, медуллинов и др.), желудок (секреция гастрина), кишечник (секреция вазоактивного интестинального пептида и др.), селезёнка (секреция спленинов) и др. Эндокринные клетки содержатся во всём организме человека.

    Выделено и описано более 30 гормонов, которые секретируются в кровяное русло клетками или скоплениями клеток, расположенными в тканях желудочно-кишечного тракта. Эндокринные клетки желудочно-кишечного тракта синтезируют гастрин, гастринсвязывающий пептид, секретин, холецистокинин, соматостатин, вазоактивный интестинальный полипептид (ВИП), вещество P, мотилин, галанин, пептиды гена глюкагона (глицентин, оксинтомодулин, глюкагоноподобный пептид 1 и 2), нейротензин, нейромедин N, пептид YY, панкреатический полипептид, нейропептид Y, хромогранины (хромогранин A и относящиеся к нему пептид GAWK и секретогранин II).

    • Эндокринный контроль можно рассматривать как цепь регуляторных эффектов, в которой результат действия гормона прямо или косвенно влияет на элемент, определяющий содержание доступного гормона.
    • Взаимодействие происходит, как правило, по принципу отрицательной обратной связи: при воздействии гормона на клетки-мишени их ответ, влияя на источник секреции гормона, вызывает подавление секреции.
      • Положительная обратная связь, при которой секреция усиливается, встречается крайне редко.
    • Эндокринная система также регулируется посредством нервной и иммунной систем.

    Эндокринные заболевания — это класс заболеваний, которые возникают в результате расстройства одной или нескольких эндокринных желёз. В основе эндокринных заболеваний лежат гиперфункция, гипофункция или дисфункция желёз внутренней секреции.

    Апудомы[править | править код]

    Апудо́мы — опухоли, исходящие из клеточных элементов, расположенных в различных органах и тканях (преимущественно островковые (инкреторные) клетки поджелудочной железы, клетки других отделов ЖКТ, С-клетки щитовидной железы), продуцирующих полипептидные гормоны. В настоящее время описаны следующие виды апудом[2]:

    Синдром Випома[править | править код]

    ВИПо́ма (синдром Вернера-Моррисона, панкреатическая холера, синдром водной диареи-гипокалиемии-ахлоргидрии) — характеризуется наличием водной диареи и гипокалиемии в результате гиперплазии островковых клеток или опухоли, часто злокачественной, исходящей из островковых клеток поджелудочной железы (чаще тела и хвоста), которые секретируют вазоактивный интестинальный полипептид (ВИП). В редких случаях ВИПома может приходиться на ганглионейробластомы, которые локализуются в ретроперитонеальном пространстве, лёгких, печени, тонкой кишке и надпочечниках, встречаются в детском возрасте и, как правило, доброкачественные. Размер панкреатических ВИПом 1…6 см. В 60 % случаев злокачественных новообразований на момент диагностики имеются метастазы[3]. Заболеваемость ВИПомой очень мала (1 случай в год на 10 млн человек) или 2 % от всех эндокринных опухолей желудочно-кишечного тракта. В половине случаев опухоль злокачественная. Прогноз чаще неблагоприятный.

    Гастринома[править | править код]

    При гиперплазии G-клеток образуется гастрино́ма — доброкачественная или злокачественная опухоль, локализующаяся в поджелудочной железе, двенадцатиперстной или тощей кишке, или даже в перипанкреатических лимфатических узлах, в воротах селезёнки или стенке желудка. Эта опухоль вырабатывает большее количество гастрина, возникает гипергастринимия, которая, через механизм стимуляции париетальных клеток, является причиной чрезмерной продукции соляной кислоты и пепсина. В нормальной ситуации G-клетки под воздействием соляной кислоты тормозят выработку гастрина, но на G-клетки гастрино́м фактор кислотности не влияет. В результате развиваются множественные пептические язвы желудка, двенадцатиперстной или тощей кишки. Секреция гастрина гастриномами особенно резко усиливается после приёма пищи.

    Клиническое проявление гипергастринимии — синдром Золлингера — Эллисона (1-го типа)[4].

    Глюкагонома[править | править код]

    Глюкагоно́ма — опухоль, чаще злокачественная, исходящая из альфа-клеток панкреатических островков. Характеризуется мигрирующим эрозивным дерматозом, ангулярным апапахейлитом, стоматитом, глосситом, гипергликемией, нормохромной анемией. Растёт медленно, метастазирует в печень. Встречается 1 случай на 20 млн в возрасте от 48 до 70 лет, чаще у женщин[2].

    Карциноид — злокачественная опухоль, обычно возникающая в желудочно-кишечном тракте, которая вырабатывает несколько веществ, обладающих гормоноподобным действием

    Не́йротензино́ма[править | править код]
    ППома[править | править код]

    ППо́ма — опухоль поджелудочной железы, секретирующая панкреатический полипептид (ПП). Клинические проявления практически отсутствуют. Чаще диагностируется после метастазирования в печень[2]. Лечение: оперативное, химиотерапия и симптоматическое. Прогноз зависит от срока начала лечения.

    Соматостатинома[править | править код]

    Сома́тостатино́ма — злокачественная медленно растущая опухоль, характеризуется повышением уровня соматостатина. Это редкое заболевание, встречается у лиц старше 45 лет — 1 случай на 40 млн[2].

    Различают:

    Диагноз на основании клиники и повышения уровня соматостатина в крови. Лечение оперативное, химиотерапия и симптоматическое. Прогноз зависит от своевременности лечения.

    Нозологии
    Эпифиз
    Гипоталамус
    Гипофиз
    Щитовидная
    железа
    Надпочечники
    Половые
    железы
    Паращитовидные
    железы
    Поджелудочная
    железа
    Диффузная
    нейроэндокринная
    система
    Гормоны
    и
    медиаторы
    Белковые гормоны: Пептидные гормоны: АКТГ, СТГ, Меланоцитостимулирующий гормон, Пролактин, Паратгормон, Кальцитонин, Инсулин, Глюкагон;
    Гормоны желудочно-кишечного тракта
    Гастрин, Холецистокинин (Панкреозимин), Секретин, ВИП, Панкреатический полипептид, Соматостатин;
    Гормоны APUD-системы
    Ангиотензиноген, Ангиотензин, Предсердный натрийуретический пептид, Глюкозозависимый инсулинотропный полипептид, Эритропоэтин, Тромбопоэтин, Грелин (гормон голода), Лептин (гормон насыщения), Хорионический гонадотропин человека, Плацентарный лактоген, Нейропептид Y, Релаксин,
    Гликопротеиды
    ТТГ, ФСГ, ЛГ, тиреоглобулин.
    Стероидные гормоны: Гормоны коры надпочечников
    Кортизол, Кортизон, Гидрокортизон, Кортикостерон, Альдостерон, Дегидроэпиандростерон, Прегнан, Преднизолон.
    Половые гормоны
    Андростерон, Андростендиол, Тестостерон, Дигидротестостерон, Метилтестостерон, Эстрон, Эстрадиол, Эстриол, Этинилэстрадиол.
    Гормон жёлтого тела
    Прогестерон.
    Производные аминокислот: Производные тирозина
    Тиреоидные гормоны (

    ru.wikipedia.org

    Гормон - это... Что такое Гормон?

    группа биологически активных веществ, выделяемых железами внутренней секреции; гормонами называют также некоторые вещества, секретируемые нежелезистыми тканями.

    Гормо́н адренокортикотро́пный (h. adrenocorticotropicum; АКТГ; син. адренокортикотропин, кортикотропин, кортикотрофин) — Г. передней доли гипофиза, стимулирующий функцию коркового вещества надпочечников.

    Гормо́ны анаболи́ческие (h. anabolica) — Г., стимулирующие усиление синтеза белка в организме; используются в качестве анаболических средств.

    Гормо́н антидиурети́ческий (h. antidiureticum; Анти- + Диурез; АДГ; син.: адиуретин, вазопрессин) — Г., секретируемый клетками надзрительного и околожелудочкового ядер гипоталамуса, накапливающийся в задней доле гипофиза, стимулирующий реабсорбцию жидкости в дистальном отделе нефрона.

    Гормо́ны белко́во-пепти́дные — общее название группы Г., являющихся по химическому составу белками или пептидами; например, Г. передней доли гипофиза, щитовидной и паращитовидной желез и др.

    Гормо́ны гипо́физа тро́пные (h. hypophysis tropica; греч. tropos поворот, направление; син. Г. кринотропные) — Г. передней доли гипофиза, избирательно активирующие деятельность определенных эндокринных желез, например соматотропный, тиреотропный, адренокортикотропный и др. Гормо́н гонадотро́пный (h. gonadotropicum; Гонада + греч. tropos поворот, направление; син. гонадотропин) — общее название тропных Г. передней доли гипофиза, стимулирующих формирование и активность половых желез (фолликулостимулирующий и лютеинизирующий Г.). Гормо́ны кринотро́пные (h. crinotropica; греч. krinō отделять, выделять + tropos поворот, направление) — см. Гормоны гипофиза тропные. Гормо́н лактоге́нный (лат. lac, lactis молоко + греч. -genēs порождающий) — см. Пролактин. Гормо́н лютеинизи́рующий (h. luteinisans; анат. corpus luteum желтое тело; ЛГ; син. пролан Б) — гонадотропный гормон передней доли гипофиза, вызывающий образование желтого тела яичника. Гормо́н лютеотро́пный (h. luteotropicum; анат. corpus luteum желтое тело + греч. tropos поворот, направление; ЛТГ) — см. Пролактин. Гормо́н меланофо́рмный (h. melanoforme; греч. melas, melanos темный, черный + лат. -formis похожий) — см. Гормон меланоцитостимулирующий. Гормо́н меланоцитостимули́рующий (h. melanocytostimulans; Меланоцит + лат. stimulo возбуждать, побуждать; син.: Г. меланоформный, Г. хроматотрофный, интермедии, мелатонин) — Г. передней доли гипофиза, стимулирующий функцию меланоцитов и тем самым регулирующий пигментацию. Гормо́ны овариа́льные (h. ovarialia) — стероидные Г., секретируемые яичником; включают фолликулярные Г. (эстрадиол, эстрон и эстриол) и Г. желтого тела — прогестерон; действуют на морфогенез и функцию женской половой системы.

    Гормо́ны половы́е (h. sexualia) — стероидные Г., секретируемые половыми железами, корой надпочечников и плацентой, стимулирующие формирование вторичных половых признаков и функционирование половых органов.

    Гормо́ны половы́е же́нские (h. sexualia feminina) — см. Эстрогены. Гормо́ны половы́е мужски́е (h. sexualia masculina) — см. Андрогены.

    Гормо́н ро́ста — см. Гормон соматотропный.

    Гормо́н соматотро́пный (h. somatotropicum; греч. sōma, sōmatos тело + tropos поворот, направление; СТГ; син.: гормон роста, соматотропин) — Г. передней доли гипофиза, стимулирующий анаболические процессы; обладает видовой специфичностью. Гормо́ны стеро́идные (h. steroidea) — Г., молекула которых содержит циклопентанопергидрофенантреновый комплекс; к Г. с. относятся все гормоны коры надпочечников и половых желез. Гормо́н тиреостимули́рующий (анат. glandula thyreoidea щитовидная железа + лат. stimulo возбуждать, побуждать) — см. Гормон тиреотропный. Гормо́н тиреотро́пный (h. thyreotropicum; анат. glandula thyreoidea щитовидная железа + греч. tropos поворот, направление; ТТГ; син.: Г. тиреостимулирующий, тиреотропин, тиреотрофин) — Г. передней доли гипофиза, стимулирующий функцию щитовидной железы. Гормо́н фолликулостимули́рующий (h. folliculostimulans; Фолликулы + лат. stimulo возбуждать, побуждать; син. пролан А) — Г. передней доли гипофиза, стимулирующий развитие семенных канальцев и сперматогенез у мужчин и развитие фолликулов до момента овуляции у женщин.

    Гормо́н хориони́ческий лактосоматотро́пный (h. chorionicum lactosomatotropicum; лат. lac, lactis молоко + греч. sōma, sōmatos тело + tropos поворот, направление) — Г., секретируемый плацентой и обладающий биологическими и иммунологическими свойствами, близкими к свойствам лютеотропного и соматотропного гормонов.

    Гормо́н хроматотро́фный (h. chromatotrophicum; греч. chrōma, chrōmatos окраска, цвет + trophē питание) — см. Гормон меланоцитостимулирующий.

    dic.academic.ru

    Гормон роста — Википедия

    Соматотропин (СТГ, соматотропный гормон, соматропин, гормон роста) — один из гормонов передней доли гипофиза. Относится к семейству полипептидных гормонов, в которое входят также пролактин и плацентарный лактоген.

    Пять генов гормона роста расположены в соседних секциях хромосомы 17 имеют высокую степень гомологии и, видимо, возникли в результате дубликации предкового гена. Два из них дают две основные изоформы гормона роста, одна из которых синтезируется в основном в гипофизе, а другая — в клетках синцитиотрофобласта плаценты. Альтернативный сплайсинг увеличивает число изоформ и предполагает возможность их специализации в воздействии на разные ткани. В крови присутствуют несколько изоформ, основная из которых содержит 191 аминокислоту и имеет молекулярную массу 22124 г/моль[уточнить].

    Действие гормона роста на органы и ткани[править | править код]

    Гормоном роста соматотропин называют за то, что у детей и подростков, а также молодых людей с ещё не закрывшимися зонами роста в костях он вызывает выраженное ускорение линейного (в длину) роста, в основном за счет роста длинных трубчатых костей конечностей. Соматотропин оказывает мощное анаболическое и антикатаболическое действие, усиливает синтез белка и тормозит его распад, а также способствует снижению отложения подкожного жира, усилению сгорания жира и увеличению соотношения мышечной массы к жировой. Кроме того, соматотропин принимает участие в регуляции углеводного обмена — он вызывает выраженное повышение уровня глюкозы в крови и является одним из контринсулярных гормонов, антагонистов инсулина по действию на углеводный обмен. Описано также его действие на островковые клетки поджелудочной железы, иммуностимулирующий эффект, усиление поглощения кальция костной тканью и др. Многие эффекты гормон роста вызывает непосредственно, но значительная часть его эффектов опосредуется инсулиноподобными факторами роста, главным образом IGF-1 (ранее его называли соматомедином С), который вырабатывается под действием гормона роста в печени и стимулирует рост большинства внутренних органов. Дополнительные количества IGF-1 (англ. Insulin–like growth factor) синтезируются в тканях-мишенях.

    Рецептор гормона роста и механизм его действия[править | править код]

    Рецептор гормона роста — трансмембранный белок, относящийся к суперсемейству рецепторов с тирозинкиназной активностью. Согласно данным большинства исследователей при взаимодействии с одной молекулой гормона происходит объединение двух молекул рецептора (димеризация), после чего рецептор активируется, и его внутриклеточный домен фосфорилирует сам рецептор и основной белок-мишень — янус-киназу (JAK-2). Дальнейшая передача сигнала идет несколькими путями — через белки STAT янус-киназа активирует транскрипцию ряда генов, через белок IRS (субстрат инсулинового рецептора) осуществляется влияние на транспорт глюкозы в клетки и др. JAK-2 может также непосредственно активировать другие рецепторы, например, рецептор эпидермального фактора роста, чем, видимо, объясняется митогенное действие гормона роста.

    Суточные ритмы секреции[править | править код]

    Секреция гормона роста, как и многих других гормонов, происходит периодически и имеет несколько пиков в течение суток (обычно пик секреции наступает через каждые 3-5 часов). Наиболее высокий и предсказуемый пик наблюдается ночью, примерно через час-два после засыпания.

    Возрастные изменения секреции[править | править код]

    Наибольшая концентрация соматотропина в плазме крови — 4-6 месяц внутриутробного развития. Она примерно в 100 раз выше, чем у взрослого. Затем секреция постепенно понижается с возрастом. Она минимальна у пожилых и стариков, у которых снижается как базовый уровень, так и частота и амплитуда пиков секреции. Базовый уровень гормона роста максимален в раннем детстве, амплитуда пиков секреции максимальна у подростков в период интенсивного линейного роста и полового созревания.

    Концентрация в крови[править | править код]

    Базовая концентрация гормона роста в крови составляет 1-5 нг/мл, во время пиков может повышаться до 10-20 и даже 45 нг/мл. Большая часть циркулирующего в крови гормона роста связаны с транспортным белком гормона роста (англ. growth hormone binding protein, GHBP), который представляет собой частичный транскрипт того же гена, который кодирует рецептор гормона роста.

    Главные регуляторы секреции гормона роста — пептидные гормоны гипоталамуса (соматостатин и соматолиберин), которые выделяются нейросекреторными клетками гипоталамуса в портальные вены гипофиза и действуют непосредственно на соматотропы. Однако на баланс этих гормонов и на секрецию гормона роста влияет множество физиологических факторов.

    Стимулируют секрецию гормона роста:

    При гипогликемии уровень соматотропина в крови резко повышается — это один из естественных физиологических механизмов быстрой коррекции гипогликемии.

    Подавляют секрецию гормона роста:

    Сами по себе андрогены на секрецию гормона роста никак не влияют.

    На секрецию гормона роста влияют также некоторые ксенобиотики.

    Для проявления анаболического действия соматотропина на синтез белка и линейный рост организма присутствие инсулина необходимо — в отсутствие инсулина или при его пониженном уровне соматотропин не оказывает анаболического действия. В отношении синтеза белка соматотропин и инсулин действуют не антагонистично, как на углеводный обмен, а синергично. По-видимому, именно отсутствием или недостаточностью усиливающего действия инсулина на чувствительность клеток к анаболическому эффекту соматотропина объясняется плохой линейный рост и отставание в физическом развитии детей с диабетом I типа, особенно заметное при недостаточности дозы инсулина (недостаточной компенсации диабета) - синдром Мориака.

    Для проявления анаболического и жиросжигающего действия соматотропина на клетки необходимо, кроме того, присутствие половых гормонов и гормонов щитовидной железы. Это объясняет задержку линейного роста и отставание физического развития детей и подростков с гипогонадизмом (недостаточностью половых гормонов) и с гипотиреозом (недостаточностью щитовидной железы).

    Антагонистическое действие по отношению к влиянию соматотропина на синтез белка, сгорание жира и на линейный рост оказывают глюкокортикоиды, в частности кортизол.

    Соматотропин оказывает модулирующее действие на некоторые функции ЦНС, являясь не только эндокринным гормоном, но и нейропептидом, то есть медиаторным белком, принимающим участие в регуляции деятельности ЦНС. По некоторым данным, гормон роста может преодолевать гемато-энцефалический барьер. Показано, что гормон роста вырабатывается и внутри мозга, в гиппокампе. Его уровень в гиппокампе растет у самок при повышении уровня эстрогенов в крови, у самок и самцов растет при остром стрессе и понижается при повышении уровня IGF-1 (который также вырабатывается в мозге). Рецепторы гормона роста обнаружены в различных отделах головного мозга и в спинном мозге. Показано, что «пульсирующий» ритм секреции гормона роста регулируется специальным пептидом, GHRP, рецепторы к которому имеются в гипоталамусе и гиппокампе. В целом предполагается участие гормона роста в процессах обучения (подтвержденные опытами на грызунах) и регуляции гомеостаза, в том числе потребления пищи.

    В результате предварительных исследований на пожилых людях, проведенных в начале 1990-х гг., возникло впечатление, что введение экзогенного гормона роста может замедлять старение и улучшать физическое состояние пожилых людей. Эти данные были раздуты журналистами и рекламой.

    Позднее эти данные были дополнены результатами исследования на мышах, которые показали, что при пониженном содержании гормона роста или пониженной чувствительности клеток к нему, а также при пониженной концентрации IGF-1 в период эмбрионального развития продолжительность жизни существенно повышается.

    Патологии, связанные с гормоном роста[править | править код]

    У взрослых патологическое повышение уровня соматотропина или длительное введение экзогенного соматотропина в дозах, характерных для растущего организма, приводит к утолщению костей и огрублению черт лица, увеличению размеров языка — макроглосии. Сопутствующие осложнения — сдавливание нервов (туннельный синдром), уменьшение силы мышц, повышение инсулиноустойчивости тканей. Обычная причина акромегалии — аденома передней доли гипофиза. Обычно аденомы возникают в зрелом возрасте, но при редких случаях их возникновения в детстве наблюдается гипофизарный гигантизм.

    Недостаток[править | править код]

    Недостаток гормона роста в детском возрасте связан в основном с генетическими дефектами и вызывает задержку роста гипофизарный нанизм, а иногда также полового созревания. Задержки умственного развития, видимо, наблюдаются при полигормонной недостаточности, связанной с недоразвитием гипофиза. Во взрослом возрасте дефицит гормона роста вызывает усиленное отложение жира на теле. Выявлены гены HESX1 и LHX3, которые контролируют развитие гипофиза и различных структур переднего мозга, а также ген PROP1, контролирующий созревание клеток передней доли гипофиза. Мутации этих генов приводят к нехватке гормона роста или полигормонной недостаточности. Мутации гена рецептора гормона роста с потерей функции приводят к развитию синдрома Ларона. Признаки заболевания — резкое замедление роста (пропорциональный нанизм), уменьшенные размеры лицевой части черепа и некоторые другие отклонения. Больные характеризуются высокой концентрацией гормона роста, но очень низким содержанием IGF-1 в плазме крови. Это редкое рецессивно-аутосомное заболевание встречается в основном среди средиземноморских народов и в Эквадоре.

    Терапевтическое использование гормона роста[править | править код]

    Использование в лечении нарушений роста у детей[править | править код]

    Стимулирование роста путём ежедневного введения экстракта гипофиза. В чистом виде гормон был выделен только в 1970-е гг., сначала из гипофиза быка, затем лошади и человека. Гормональная терапия должна проводиться насколько возможно раньше и по крайней мере до конца полового созревания. На сегодня это наиболее эффективный метод лечения гипофизарной карликовости.

    Использование для лечения нервных расстройств[править | править код]

    В некоторых работах показано, что соматотропин улучшает память и познавательные функции, особенно у больных с гипофизарным нанизмом (недостаточностью соматотропной функции гипофиза), и что введение соматотропина может улучшать настроение и самочувствие больных с низким уровнем соматотропина в крови — не только больных с клинически выраженным гипофизарным нанизмом, но и, например, депрессивных больных. Вместе с тем чрезмерно высокий уровень соматотропина в крови, наблюдаемый при акромегалии, также вызывает депрессию и другие нарушения деятельности ЦНС. В то же время данные о влиянии гормона роста на познавательные функции человека противоречивы.

    Использование для профилактики старческих заболеваний[править | править код]

    В 1990 году появилась статья, в которой на 12 пожилых людях было показано [1], что длительное (в течение 6 месяцев) введение в кровь гормона роста привело к увеличению массы мышц, снижению массы жировой ткани и усилению минерализации и повышению плотности костной ткани. Дальнейшие более масштабные и аккуратные (с использованием двойного слепого метода) исследования подтвердили снижение массы жировой ткани и увеличение массы мышц и не подтвердили увеличение плотности костной ткани. При этом оказалось, что сила мышц не увеличилась, а рост мышечной массы, видимо, был связан с удержанием в организме большего количества жидкости. Наблюдались также многочисленные побочные эффекты (повышение артериального давления, гипергликемия и др).

    Ввиду того что гормональное действие соматотропина на организм (повышение уровня глюкозы крови, развитие акромегалоидного строения скелета) препятствует его длительному применению в качестве ноотропа, предпринимаются попытки синтезировать полипептид, который бы обладал сродством к соматотропиновым рецепторам ЦНС, но не обладал сродством к рецепторам этого гормона в остальном организме.

    Использование в спорте[править | править код]

    Препараты гормона роста применялись в медицинских целях, а также в спорте, что связано с его способностью к увеличению мышечной массы и снижению жировой прослойки при активных занятиях.

    В 1989 году гормон роста был официально запрещен Олимпийским комитетом, однако в последнее время продажи препарата увеличились в несколько раз. В большинстве своём гормон роста применяется спортсменами-бодибилдерами, которые комбинируют его с другими анаболическими препаратами.

    ru.wikipedia.org

    ГОРМОН - это... Что такое ГОРМОН?

  • гормон — сущ., кол во синонимов: 126 • абсцизин (2) • адкортил (2) • адреналин (7) • …   Словарь синонимов

  • ГОРМОН — (от греч. hormao «приводить в движение», «побуждать») биологически активное вещество, продуцируемое железой внутренней секреции (эндокринной железой), т. е. выделяемое непосредственно в кровь. Каждый Г. обладает своими особыми функциями в системе …   Большая психологическая энциклопедия

  • ГОРМОН — ГОРМОН, а, муж. (спец.). Биологически активное вещество, вырабатываемое специальными органами или клетками в одной части организма и регулирующее деятельность органов и тканей в других частях организма. | прил. гормональный, ая, ое и гормонный,… …   Толковый словарь Ожегова

  • гормон — Биологически активное вещество, выделяемое во внутреннюю среду организма и регулирующее его важнейшие функции. [ГОСТ 21507 81] Тематики защита растений …   Справочник технического переводчика

  • Гормон — вещество, синтезирующееся в железах внутренней секреции и других клетках, которое выделяется непосредственно в кровь и оказывает свое специфическое действие на органы и ткани. Источник …   Словарь-справочник терминов нормативно-технической документации

  • гормон — (гр. hormao привожу в движение, побуждаю) иначе ивкрет продукт желез внутренней секреции, выделяемый непосредственно в кровь; гормоны как физиологически активные вещества участвуют в регуляции функций организма. Новый словарь иностранных слов. by …   Словарь иностранных слов русского языка

  • ГОРМОН — (hormone) вещество, вырабатываемое эндокринными железами (например, щитовидной, надпочечниками, гипофизом и др.) или эндокринными клетками, попадающее в кровоток и переносимое с ним в другие (удаленные) органы или ткани, где оно способно… …   Толковый словарь по медицине

  • гормон — ( ы) (hormonum, a; греч. hormao приводить в движение, побуждать) группа биологически активных веществ, выделяемых железами внутренней секреции; гормонами называют также некоторые вещества, секретируемые нежелезистыми тканями …   Большой медицинский словарь

  • Гормон — м. см. гормоны Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 …   Современный толковый словарь русского языка Ефремовой

  • гормон — гормон, гормоны, гормона, гормонов, гормону, гормонам, гормон, гормоны, гормоном, гормонами, гормоне, гормонах (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») …   Формы слов

  • dic.academic.ru

    Тиреотропный гормон — Википедия

    Тиреотропный гормон, или ТТГ, тиреотропин, тиротропин (англ. thyrotropine, TSH, thyroid stimulating hormone) — тропный гормон передней доли гипофиза.

    По химическому строению тиротропин является гликопротеидным гормоном.

    Тиреотропный гормон состоит из двух субъединиц (α и β), связанных между собой нековалентной связью. α-субъединица также представлена в других гормонах (фоллитропин, лютропин, хорионический гонадотропный гормон).

    Каждый из этих гормонов также имеет β-субъединицу, которая и обеспечивает специфическое связывание гормонов со своими рецепторами.

    Рецепторы тиреотропина находятся на поверхности эпителиальных клеток щитовидной железы. Отдельные субъединицы не активны. Выделенный тиреотропин действует и на аденогипофиз, в результате чего тормозит свой синтез.

    Аналогичный гормон также секретируется в эпифизе.

    Выделение тиреотропина регулируется системой с отрицательной обратной связью, а также рилизинг-факторами, которые выделяются нейросекреторными клетками гипоталамуса.

    Тиреотропин, воздействуя на специфические рецепторы, находящиеся на поверхности эпителиальных клеток щитовидной железы, стимулирует выработку и активацию тироксина. Рецептор тиреотропина относится к суперсемейству мембранных GPCR, сопряженных с Gs-белком (белком, активирующим аденилатциклазу). Активируя аденилатциклазу, он увеличивает потребление йода клетками железы. Последующее увеличение уровня сАМР обусловливает действие ТТГ на биосинтез трийодтиронина (Т3) и тироксина (Т4) (синтез длится около минуты), которые являются важнейшими гормонами, регулирующими рост и развитие.

    Кроме того, тиреотропин вызывает некоторые длительные эффекты, для проявления которых требуется несколько дней.

    Это, например, увеличение синтеза белков, нуклеиновых кислот, фосфолипидов, увеличение количества и размеров тиреоидных клеток.

    Между концентрациями свободного Т4 и ТТГ в крови существует обратная зависимость: превышение концентрации тироксина (Т4) некоторого уровня приводит к снижению выработки ТТГ, понижение концентрации Т4 относительно этого уровня повышает выработку гормона.

    Тиреотропин, воздействуя на периферические рецепторы к ТТГ в щитовидной железе, также повышает активность селен-зависимой монодейодиназы периферических тканей и чувствительность рецепторов тканей к тиреоидным гормонам, тем самым как бы «подготавливая» ткани к воздействию тиреоидных гормонов.

    Для тиреотропина характерны суточные колебания секреции.

    Наибольшая концентрация ТТГ в крови наблюдается в 2-4 часа ночи, ненамного она понижается до 6-8 часов утра, наименьшее количество ТТГ приходится на 17-19 часов.

    При бодрствовании ночью нормальный ритм секреции этого гормона нарушается. Концентрация тиреотропина понижается при беременности. Также с возрастом ТТГ становится немного больше, уменьшается выброс гормона в ночное время суток.

    В больших концентрациях и при продолжительном воздействии тиротропин вызывает пролиферацию ткани щитовидной железы, увеличение её размеров и массы, увеличение количества коллоида в ней, то есть её функциональную гипертрофию.

    • Березов Т. Т., Коровкин Б. Ф. Биологическая химия. — 2-е изд. — М.: Медицина, 1990. — 528 с.
    • Основы эндокринологии. — 3-е изд., перераб. и доп. — М.: Медицина, 1994. — 384 с. — 5000 экз. — ISBN 5-211-03251-9.

    ru.wikipedia.org

    Половые гормоны — Википедия

    Материал из Википедии — свободной энциклопедии

    Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 августа 2013; проверки требуют 30 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 августа 2013; проверки требуют 30 правок. Упрощённая версия стероидогенеза

    Половые гормоны (гонадостероиды) — гормоны, обеспечивающие развитие и функционирование имеющих признаки биологического пола живых организмов по мужскому или женскому типу, что полностью проявляется с наступлением половой зрелости, достигаемой в завершении периода полового созревания. В соответствии с этим половые гормоны делятся на мужские и женские.

    Расширенная версия стероидогенеза

    В основном половые гормоны вырабатываются половыми железами — мужскими (яички) и женскими (яичники), являющимися главными элементами репродуктивной системы человека. В этом проявляется эндокринная функция данных желез — гормоны выделяются в кровяное русло, в отличие от экзокринной функции этих желез — выработки половых клеток, выделяемых во внешнюю среду.

    Стероидогенез прогестогенов

    Мужские гормоны призваны обеспечивать мужской тип телосложения, развития половых органов, оволосения, набор мышечной массы, более низкий тембр голоса. Женские гормоны задают женский тип телосложения, большее развитие молочных желез и возможность лактации, полное развитие внутренних женских половых органов и меньшее и отличное от мужского типа — наружных женских (клитор обычно меньше пениса; эмбриональная урогенитальная борозда не зарастает, превращаясь в половую щель с преддверием влагалища; яичники, в отличие от яичек, опускающихся в мошонку, в норме не опускаются из полости малого таза в гомолог мошонки — большие половые губы). В достигшем половой зрелости женском организме гормоны обеспечивают менструальный цикл, возможность беременности, родов и лактации (выработки грудного молока).

    Стероидогенез андрогенов

    В организмах как особей мужского, так и особей женского пола в норме в небольших количествах вырабатываются гормоны, характерные для противоположного пола. При некоторых патологических процессах это соотношение может нарушаться, и это может проявляться изменениями в функционировании организма, который временно или постоянно приобретает часть признаков другого пола. Так, при повышенном уровне мужских половых гормонов у женщин происходит маскулинизация (вирилизация): тело не приобретает характерные для женщин пропорции, мышечная масса может доминировать над жировой, грудные железы остаются малоразвитыми; усиливается рост волос на теле — он происходит и за пределами мест, характерных для женского типа оволосения — подмышечных впадин и паховой области; может наблюдаться клиторомегалия; голос становится более низким. У мужчин с высоким уровнем женских гормонов может развиваться феминизация — наступить ожирение, произойти рост грудных желез (гинекомастия).

    Мужские половые гормоны:

    Женские половые гормоны:

    Стероидогенез эстрогенов

    В несколько более широком смысле половые гормоны — вообще все гормоны, производимые половыми железами, не только половые стероиды, но и, например, ингибин яичников.

    В самом широком смысле понятие половые гормоны включает в себя все гормоны, имеющие прямое отношение к физиологической регуляции репродуктивной функции, как гормоны, производимые половыми железами, так и гонадотропин-рилизинг-гормон, гонадотропные гормоны, пролактин. Сюда же с некоторой долей условности можно отнести гормон эпифиза мелатонин, являющийся своего рода «гонадостатином», функционально аналогичным соматостатину в соматотропной оси, для гонадотропной оси.

    Несмотря на то, что влияние на те или иные аспекты репродуктивной функции оказывают практически все гормоны (например, инсулин увеличивает стероидогенез в яичниках, глюкокортикоиды понижают чувствительность тканей к половым стероидам, тиреоидные гормоны её повышают, и т. д.), их не относят к половым даже при самом широком толковании термина, поскольку регуляция репродуктивной функции — не единственная и даже не главная физиологическая роль этих гормонов.

    ru.wikipedia.org

    Эстрогены — Википедия

    Стероидогенез эстрогенов

    Эстроге́ны (нем. Östrogene[1]) — общее собирательное название подкласса стероидных женских половых гормонов, производимых, в основном, фолликулярным аппаратом яичников у женщин. Также производятся яичками у мужчин, корой надпочечников и другими внегонадными тканями (включая кости, мозг, жировую ткань, кожу и волосяные фолликулы) у обоих полов[2].

    Слово «эстроген» заимствовано из немецкого языка (Östrogen[1]) и образовано в 1920-е годы[3] от медицинского термина конца XVII века[4]эструс (лат. oestrus от греч. οίστρος «страсть, ярость»[5]), означающего период половой активности у самок млекопитающих, известного как «течка»[6], и суффикса -gen от греч. -γενής «рождённый»[7].

    У человека выделяют три типа эстрогенов: эстрадиол, эстриол и эстрон. Они образуются в организме путём сложной ферментативной реакции из андрогенов: эстрадиол образуется из тестостерона, а эстрон из андростендиона под воздействием фермента ароматазы.

    Эстрон по эффективности имеет более слабый эффект, чем эстрадиол и после менопаузы его уровень преобладает над эстрадиолом.

    Название «эстрогены» происходит от способности этих гормонов вызывать у самок млекопитающих пролиферацию, ороговение и частичное слущивание эпителия влагалища и выделение слущивающимся эпителием влагалища специфических запаховых веществ (феромонов), привлекающих самцов, то есть течку (эструс). У женщин в физиологических концентрациях эстрогены усиливают секрецию влагалищной слизи, рост и дифференцировку клеток влагалищного эпителия, однако не вызывают столь характерного для самок млекопитающих феномена ороговения и слущивания эпителия влагалища. Вместе с тем при повышенных концентрациях эстрогенов и у женщин может наблюдаться (обычно не видимое макроскопически, а лишь в мазках из влагалища под микроскопом) частичное ороговение и тенденция к слущиванию влагалищного эпителия.

    В клетках органов-мишеней эстрогены образуют комплекс со специфическими рецепторами (обнаружены в различных органах — в матке, влагалище, мочеиспускательном канале, молочной железе, печени, гипоталамусе, гипофизе). Комплекс рецептор-агонист взаимодействует с эстроген-эффекторными элементами генома и специфическими внутриклеточными белками, индуцирующими синтез мРНК, белков и высвобождение цитокинов и факторов роста.

    Эстрогены оказывают сильное феминизирующее влияние на организм. Они стимулируют развитие матки, маточных труб, влагалища, стромы и протоков молочных желез, пигментацию в области сосков и половых органов, формирование вторичных половых признаков по женскому типу, рост и закрытие эпифизов длинных трубчатых костей. Способствуют своевременному отторжению эндометрия и регулярным кровотечениям, в больших концентрациях вызывают гиперплазию и кистозно-железистое перерождение эндометрия, подавляют лактацию, угнетают резорбцию костной ткани, стимулируют синтез ряда транспортных белков (тироксинсвязывающий глобулин, транскортин, трансферрин, протеин, связывающий половые гормоны), фибриногена. Оказывают прокоагулянтное действие, индуцируют синтез в печени витамин К-зависимых факторов свертывания крови (II, VII, IX, X), снижают концентрацию антитромбина III.

    Эстрогены повышают концентрации в крови тироксина, железа, меди. Оказывают антиатеросклеротическое действие, увеличивают содержание ЛПВП, уменьшает ЛПНП и холестерина (уровень триглицеридов возрастает).

    Эстрогены модулируют чувствительность рецепторов к прогестинам и симпатическую регуляцию тонуса гладкой мускулатуры, стимулируют переход внутрисосудистой жидкости в ткани и вызывают компенсаторную задержку натрия и воды. В больших дозах препятствуют деградации эндогенных катехоламинов, конкурируя за активные рецепторы КОМТ.

    После менопаузы в организме женщин образуется только незначительное количество эстрогенов (при угасании функции яичников эстрогены образуются в периферических тканях из дегидроэпиандростерона, синтезируемого надпочечниками[8]). Снижение содержания эстрогенов сопровождается у многих женщин сосудодвигательной и терморегулирующей нестабильностью («приливы» крови к коже лица), расстройствами сна, а также прогрессирующей атрофией органов мочеполовой системы.

    Вследствие дефицита эстрогенов в постменопаузном периоде у женщин развивается остеопороз (главным образом позвоночника)[источник не указан 1176 дней].

    1. 1 2 Крысин Л. П. эстроген // Толковый словарь иноязычных слов : свыше 25 000 слов и словосочетаний : [наиболее употребительная иноязычная лексика, вошедшая в русский язык в ХVIII–ХХ и начале ХХI в.] / Л. П. Крысин. — М.: Эксмо, 2005.
    2. Carlos Stocco. Tissue Physiology and Pathology of Aromatase (англ.) // Steroids. — 2017-02-03. — Vol. 77, iss. 1—2. — P. 27—35. — ISSN 0039-128X. — doi:10.1016/j.steroids.2011.10.013.
    3. ↑ oestrogen (англ.). Oxford Dictionaries. Oxford University Press. Дата обращения 12 апреля 2018.
    4. ↑ oestrus (англ.). Oxford Dictionaries. Oxford University Press. Дата обращения 12 апреля 2018.
    5. Крысин Л. П. эструс // Толковый словарь иноязычных слов : свыше 25 000 слов и словосочетаний : [наиболее употребительная иноязычная лексика, вошедшая в русский язык в ХVIII–ХХ и начале ХХI в.] / Л. П. Крысин. — М.: «Эксмо», 2005.
    6. Роберт Мартин. Как мы делаем это. Эволюция и будущее репродуктивного поведения человека = How We Do It: The Evolution and Future of Human Reproduction. — «Альпина нон-фикшн», 2016. — ISBN 978-5-91671-366-4.
    7. ↑ -gen (англ.). Oxford Dictionaries. Oxford University Press. Дата обращения 12 апреля 2018.
    8. M. Julie Thornton. Estrogens and aging skin // Dermato-Endocrinology. — 2013-04-01. — Т. 5, вып. 2. — С. 264–270. — ISSN null. — doi:10.4161/derm.23872.
    • Берштейн Л. М. Эстрогены, старение и возрастная патология //Успехи геронтологии. — 1998. — Т. 2. — С. 90-97.
    • Захурдаева Л. Д. Эстрогены: биологические и фармакологические эффекты //Редакционная коллегия. — 2006. — С. 41.
    • Карева Е. Н. и др. Эстрогены и головной мозг //Вестник Российской академии медицинских наук. — 2012. — Т. 67. — №. 2.
    • Сергеев П. В., Караченцев А. Н., Матюшин А. И. Эстрогены и сердце //Кардиология. — 1996. — Т. 36. — №. 3. — С. 75-78.
    • Табеева Г. Р., Громова С. А. Эстрогены и мигрень //Неврологический журнал. — 2009. — №. 5. — С. 45-53.

    ru.wikipedia.org

    Лютеинизирующий гормон — Википедия

    Лютеинизи́рующий гормо́н (ЛГ, лютеотропин, лютропин; от лат. luteum «жёлтый») — пептидный гормон, секретируемый гонадотропными клетками передней доли гипофиза. Совместно с другим гипофизарным гонадотропином — фолликулостимулирующим гормоном (ФСГ), — ЛГ необходим для нормальной работы репродуктивной системы. В женском организме ЛГ стимулирует секрецию яичниками эстрогенов, а пиковое повышение его уровня инициирует овуляцию. В мужском организме ЛГ стимулирует интерстициальные клетки Лейдига, вырабатывающие тестостерон.

    Лютеинизирующий гормон является сложным белком — гликопротеином. По строению он похож на другие гормоны-гликопротеины — ФСГ, ТТГ, ХГЧ. ЛГ человека имеет массу 28,5 кДа. Белок имеет димерную структуру и состоит из 2 субъединиц α и β, соединённых двумя дисульфидными мостиками, к каждой из которых присоединены углеводные остатки. Альфа-субъединицы ЛГ, ФСГ, ТТГ и ХГЧ идентичны и состоят из 92 аминокислотных остатков. Бета-субъединицы отличаются. Бета-субъединица лютропина, которая и определяет биологическое действие гормона, специфически взаимодействуя с мембранным рецептором, представлена 121 аминокислотой. Она содержит ту же последовательность аминокислот, что и ХГЧ, и стимулирует тот же самый рецептор. Однако ХГЧ имеет 24 дополнительных аминокислоты, и оба гормона существенно отличаются своими углеводными компонентами. Различная структура олигосахаридных фрагментов влияет на биологическую активность и скорость разрушения гормонов. Период полураспада ЛГ составляет 20 минут, что короче, чем у ФСГ (3—4 часа) и ХЧГ (24 часа).

    Ген, кодирующий α-субъединицу локализован в длинном плече шестой хромосомы (6q12.21). Ген, кодирующий структуру β-субъединицы локализован в скоплении генов LHB/CGB длинного плеча 19-й хромосомы (19q13.32). В отличие от альфа-гена экспрессия гена бета-субъединицы ограничена гонадотропными клетками гипофиза. Активность гена регулируется гипоталамическим гонадотропин-рилизинг-гормоном. Ингибин, активин и половые стероиды не оказывают влияния на активность генов, ответственных за образование β-субъединицы.

    Как у мужчин, так и у женщин ЛГ необходим для репродукции. У женщин в процессе менструального цикла ФСГ стимулирует рост фолликулов и вызывает дифференцировку и пролиферацию клеток зернистого слоя.

    Под действием ФСГ созревающие фолликулы секретируют всё возрастающие количества эстрогенов, среди которых наибольшее значение имеет эстрадиол, а также на их клетках экспрессируются и рецепторы к ЛГ. В результате к моменту созревания фолликула повышение уровня эстрадиола становится настолько высоким, что это приводит к активации гипоталамуса по принципу положительной обратной связи и интенсивному высвобождению ЛГ и ФСГ гипофизом. Этот всплеск уровня ЛГ запускает овуляцию, при этом не только высвобождается яйцеклетка, но и инициируется процесс лютеинизации — превращения остаточного фолликула в жёлтое тело, которое в свою очередь начинает вырабатывать прогестерон для подготовки эндометрия к возможной имплантации. ЛГ необходим для поддержания существования жёлтого тела примерно в течение 14 дней. В случае наступления беременности лютеиновая функция будет поддерживаться действием гормона трофобласта — хорионического гонадотропина. ЛГ также стимулирует клетки теки в яичниках, которые обеспечивают продукцию андрогенов и предшественников эстрадиола.

    У мужчин ЛГ оказывает влияние на клетки Лейдига яичек и отвечает за выработку тестостерона, который оказывает влияние на сперматогенез и является главным «мужским» гормоном.

    Выделение ЛГ находится под контролем ритмичных выбросов гипоталамусом гонадолиберина, частота которых по принципу обратной связи находится в зависимости от выделения гонадами эстрогенов.

    В норме отмечаются низкие уровни ЛГ в детском возрасте и высокие у женщин в менопаузе. В течение всего репродуктивного возраста средние уровни ЛГ колеблются в районе 5—20 мЕд/мл. Физиологическое повышение уровня ЛГ отмечаются во время овуляторного пика, длящегося, как правило, около 48 часов.

    Более точные значения (источник: лист лабораторного анализа)

    Женщины: I фаза 1,1-11,6; II фаза 0-14,7; овуляторный пик 17-77;постменопауза 11,3-40; девочки 1,6-9 лет 0,7-1,3.

    Мужчины: 0,8-7,6.

    Определение всплеска концентрации ЛГ лежит в основе методики определения момента наступления овуляции. В течение нескольких дней перед предполагаемой овуляцией с помощью специализированной тест-системы проводится ежедневное определение уровня ЛГ в моче. Получение положительного результата теста свидетельствует о том, что овуляция произойдёт в ближайшие 24—48 часов. Пары, планирующие зачатие, могут соответственно оценить благоприятное время для проведения полового акта. Поскольку в среде женского организма сперматозоиды остаются жизнеспособными в течение нескольких дней, подобные тесты не рекомендуется применять для нужд контрацепции.

    Относительное повышение[править | править код]

    У детей с преждевременным половым созреванием гипофизарного или центрального генеза уровни ЛГ и ФСГ могут находиться в репродуктивном диапазоне, а не на характерном для их возраста низком уровне.

    В репродуктивном возрасте относительное повышение ЛГ (точнее, нарушение нормального соотношения ЛГ/ФСГ) часто наблюдается у пациенток с синдромом поликистоза яичников, однако при этом уровень гормона редко выходит за пределы нормального репродуктивного диапазона.

    Высокий уровень ЛГ[править | править код]

    Упорно высокие уровни ЛГ свидетельствуют о ситуации, когда происходит нарушение нормальной отрицательной обратной связи между гонадами и гипоталамусом, ведущее к растормаживанию гипофизарной продукции ЛГ и ФСГ. Такое нормально во время менопаузы, но является отклонением от нормы во время репродуктивного периода. Это может свидетельствовать о таких состояниях как:

    Недостаточная активность ЛГ[править | править код]

    Пониженная секреция ЛГ может приводить к гипогонадизму, который у мужчин обычно проявляется снижением количества сперматозоидов. У женщин, как правило, наблюдается аменорея. С низким уровнем ЛГ могут протекать такие состояния как:

    • гипоталамические опухоли, травмы;
    • наследственные заболевания:
    • гипопитуитаризм
    • функциональные нарушения
    • гонадосупрессивная терапия

    ЛГ совместно с ФСГ входит в состав Пергонала и других мочевых гонадотропинов. Более высоко очищенные мочевые гонадотропины, как правило, содержат относительно меньшее количество ЛГ. Существует также рекомбинантный лютропин-альфа (Люверис, Luveris®)[1]. Способ введения препаратов парентеральный (как правило, внутримышечный). Обычно они применяются при терапии бесплодия, особенно при применении методики ЭКО, для стимуляции роста яичников и созревания в них фолликулов.

    Вместо ЛГ нередко используется получаемый из мочи беременных менее дорогой хорионический гонадотропин, который связывается с теми же самыми рецепторами и отличается более длительным периодом полувыведения.

    ru.wikipedia.org

    Паратиреоидный гормон — Википедия

    Материал из Википедии — свободной энциклопедии

    Па́ратирео́идный гормо́н (пара́тгормо́н, ПТГ, паратирин) — гормон, производимый паращитовидными железами. По химическому строению является одноцепочечным полипептидом, состоящим из 84 аминокислотных остатков, лишённым цистеина, с молекулярной массой около 9 500 дальтон. Образуется в паращитовидных железах из биопредшественника — пропаратгормона (проПТГ), имеющего 6 дополнительных аминокислот на NH2-конце. ПроПТГ синтезируется в гранулярном эндоплазматическом ретикулуме главных клеток паращитовидных желез и в процессе протеолитического расщепления в аппарате Гольджи превращается в ПТГ. Биологическая активность проПТГ существенно ниже активности паратгормона[1].

    Первые успехи в расшифровке структуры, природы, синтеза и основного действия паратгормона достигнуты после 1972 года[2].

    Стимулом для секреции паратгормона в кровь является снижение концентрации катионов кальция в крови. Физиологическое действие паратгормона заключается в угнетении формирования костной ткани посредством влияния на популяцию остеобластов и остеоцитов. Те, в свою очередь, выделяют инсулиноподобный фактор роста 1 и цитокины, стимулирующие метаболизм остеокластов. Активированные остеокласты секретируют щелочную фосфатазу и коллагеназу, что приводит к разрушению костного матрикса.

    Паратгормон опосредованно увеличивает канальцевую реабсорбцию катионов кальция, экскрецию фосфатов почками, а также кишечную абсорбцию кальция (путём индукции синтеза кальцитриола). Результатом действия паратгормона является повышение концентрации кальция в плазме крови и снижение содержания кальция в костях (деминерализация костного матрикса), снижение содержания фосфатов в плазме крови.

    Биологическое действие паратгормона осуществляется за счёт связывания со специфическими ПТГ-рецепторами на поверхности клеток.

    1. ↑ Клиническая эндокринология. Руководство / Под ред. Н. Т. Старковой. — 3-е изд., перераб. и доп. — СПб.: Питер, 2002. — С. 182—185. — 576 с. — («Спутник Врача»). — 4000 экз. — ISBN 5-272-00314-4.
    2. ↑ Николаев О. В., Таркаева В. Н. Гиперпаратиреоз. — М.: Медицина, 1974.

    ru.wikipedia.org


    Смотрите также